ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a scheme comprising an array of anisotropic optical waveguides, embedded in a gas of cold atoms, which can be tuned from a Hermitian to an odd-PT -- symmetric configuration through the manipulation of control and assistant laser fields. We show that the system can be controlled by tuning intra -- and inter-cell coupling coefficients, enabling the creation of topologically distinct phases and linear topological edge states. The waveguide array, characterized by a quadrimer primitive cell, allows for implementing transitions between Hermitian and odd-PT -symmetric configurations, broken and unbroken PT -symmetric phases, topologically trivial and nontrivial phases, as well as transitions between linear and nonlinear regimes. The introduced scheme generalizes the Rice-Mele Hamiltonian for a nonlinear non-Hermitian quadrimer array featuring odd-PT symmetry and makes accessible unique phenomena and functionalities that emerge from the interplay of non-Hermiticity, topology, and nonlinearity. We also show that in the presence of nonlinearity the system sustains nonlinear topological edge states bifurcating from the linear topological edge states and the modes without linear limit. Each nonlinear mode represents a doublet of odd-PT -conjugate states. In the broken PT phase, the nonlinear edge states may be effectively stabilized when an additional absorption is introduced into the system.
140 - Qi Zhang , Chaohua Tan , Chao Hang 2018
We propose a scheme to obtain a low-loss propagation of Airy surface plasmon polaritons (SPPs) along the interface between a dielectric and a negative-index metamaterial (NIMM). We show that, by using the transverse-magnetic mode and the related dest ructive interference effect between electric and magnetic absorption responses, the propagation loss of the Airy SPPs can be largely suppressed when the optical frequency is close to the lossless point of the NIMM. As a result, the Airy SPPs obtained in our scheme can propagate more than 6-time long distance than that in conventional dielectric-metal interfaces.
We propose a scheme to detect analog Hawking radiation (HR) in an atomic Bose-Einstein condensate (BEC) through measuring the diffusion of a dark soliton. The HR is generated by changing the transverse trapping potential of the BEC to obtain a backgr ound flow, which is subsonic in downstream and supersonic in upstream, satisfying the condition of black hole horizon. When the system is in thermal equilibrium at Hawking temperature, a dark soliton is created in the upstream. Due to the influence of the HR, the motion of the dark soliton is similar to a Brownian particle and hence exhibits an apparent diffusion, which can be measured and be taken as a signal of the HR. Since the dark soliton is much heavier than Hawking quanta, its diffusion is much easier detectable than the Hawking quanta themselves.
We address the properties of fully three-dimensional solitons in complex parity-time (PT)-symmetric periodic lattices with focusing Kerr nonlinearity, and uncover that such lattices can stabilize both, fundamental and vortex-carrying soliton states. The imaginary part of the lattice induces internal currents in the solitons that strongly affect their domains of existence and stability. The domain of stability for fundamental solitons can extend nearly up to the PT-symmetry breaking point, where the linear lattice spectrum becomes complex. Vortex solitons feature spatially asymmetric profiles in the PT-symmetric lattices, but they are found to still exist as stable states within narrow regions. Our results provide the first example of continuous families of stable three-dimensional propagating solitons supported by complex potentials.
We uncover that the breaking point of the PT-symmetry in optical waveguide arrays has a dramatic impact on light localization induced by the off-diagonal disorder. Specifically, when the gain/loss control parameter approaches a critical value at whic h PT-symmetry breaking occurs, a fast growth of the coupling between neighboring waveguides causes diffraction to dominate to an extent that light localization is strongly suppressed and statistically averaged width of the output pattern substantially increases. Beyond the symmetry-breaking point localization is gradually restored, although in this regime the power of localized modes grows upon propagation. The strength of localization monotonically increases with disorder at both, broken and unbroken PT-symmetry.
We present a unified theoretical study of the bright solitons governed by self-focusing and defocusing nonlinear Schrodinger (NLS) equations with generalized parity-time (PT)-symmetric Scarff II potentials. Particularly, a PT-symmetric k-wavenumber S carff II potential and a multi-well Scarff II potential are considered, respectively. For the k-wavenumber Scarff II potential, the parameter space can be divided into different regions, corresponding to unbroken and broken PT-symmetry and the bright solitons for self-focusing and defocusing Kerr nonlinearities. For the multi-well Scarff II potential the bright solitons can be obtained by using a periodically space-modulated Kerr nonlinearity. The linear stability of bright solitons with PT-symmetric k-wavenumber and multi-well Scarff II potentials is analyzed in details using numerical simulations. Stable and unstable bright solitons are found in both regions of unbroken and broken PT-symmetry due to the existence of the nonlinearity. Furthermore, the bright solitons in three-dimensional self-focusing and defocusing NLS equations with a generalized PT-symmetric Scarff II potential are explored. This may have potential applications in the field of optical information transmission and processing based on optical solitons in nonlinear dissipative but PT-symmetric systems.
We study interaction of a soliton in a parity-time (PT) symmetric coupler which has local perturbation of the coupling constant. Such a defect does not change the PT-symmetry of the system, but locally can achieve the exceptional point. We found that the symmetric solitons after interaction with the defect either transform into breathers or blow up. The dynamics of anti-symmetric solitons is more complex, showing domains of successive broadening of the beam and of the beam splitting in two outwards propagating solitons, in addition to the single breather generation and blow up. All the effects are preserved when the coupling strength in the center of the defect deviates from the exceptional point. If the coupling is strong enough the only observable outcome of the soliton-defect interaction is the generation of the breather.
194 - Chao Hang , Guoxiang Huang 2014
We investigate the possibility of guiding stable ultraslow weak-light bullets by using Airy beams in a cold, lifetime-broadened four-level atomic system via electromagnetically induced transparency (EIT). We show that under EIT condition the light bu llet with ultraslow propagating velocity and extremely low generation power formed by the balance between diffraction and nonlinearity in the probe field can be not only stabilized but also steered by the assisted field. In particular, when the assisted field is taken to be an Airy beam, the light bullet can be trapped into the main lobe of the Airy beam, propagate ultraslowly in longitudinal direction, accelerate in transverse directions, and move along a parabolic trajectory. We further show that the light bullet can bypass an obstacle when guided by two sequential Airy beams. A technique for generating ultraslow helical weak-light bullets is also proposed.
168 - Chao Hang , Guoxiang Huang 2014
We propose a scheme to produce ultraslow (3+1)-dimensional helical optical solitons, alias helical optical bullets, in a resonant three-level $Lambda$-type atomic system via quantum coherence. We show that, due to the effect of electromagnetically in duced transparency, the helical optical bullets can propagate with an ultraslow velocity up to $10^{-5}$ $c$ ($c$ is the light speed in vacuum) in longitudinal direction and a slow rotational motion (with velocity $10^{-7}$ $c$) in transverse directions. The generation power of such optical bullets can be lowered to microwatt, and their stability can be achieved by using a Bessel optical lattice potential formed by a far-detuned laser field. We also show that the transverse rotational motion of the optical bullets can be accelerated by applying a time-dependent Stern-Gerlach magnetic field. Because of the untraslow velocity in the longitudinal direction, a significant acceleration of the rotational motion of optical bullets may be observed for a very short medium length.
We propose a scheme to generate temporal vector optical solitons in a lifetime broadened five-state atomic medium via electromagnetically induced transparency. We show that this scheme, which is fundamentally different from the passive one by using o ptical fibers, is capable of achieving distortion-free vector optical solitons with ultraslow propagating velocity under very weak drive conditions. We demonstrate both analytically and numerically that it is easy to realize Manakov temporal vector solitons by actively manipulating the dispersion and self- and cross-phase modulation effects of the system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا