ﻻ يوجد ملخص باللغة العربية
We propose a scheme to detect analog Hawking radiation (HR) in an atomic Bose-Einstein condensate (BEC) through measuring the diffusion of a dark soliton. The HR is generated by changing the transverse trapping potential of the BEC to obtain a background flow, which is subsonic in downstream and supersonic in upstream, satisfying the condition of black hole horizon. When the system is in thermal equilibrium at Hawking temperature, a dark soliton is created in the upstream. Due to the influence of the HR, the motion of the dark soliton is similar to a Brownian particle and hence exhibits an apparent diffusion, which can be measured and be taken as a signal of the HR. Since the dark soliton is much heavier than Hawking quanta, its diffusion is much easier detectable than the Hawking quanta themselves.
We study the two-body momentum correlation signal in a quasi one dimensional Bose-Einstein condensate in the presence of a sonic horizon. We identify the relevant correlation lines in momentum space and compute the intensity of the corresponding sign
Observing quantum particle creation by black holes (Hawking radiation) in the astrophysical context is, in ordinary situations, hopeless. Nevertheless the Hawking effect, which depends only on kinematical properties of wave propagation in the presenc
A toolbox for the quantum simulation of polarons in ultracold atoms is presented. Motivated by the impressive experimental advances in the area of ultracold atomic mixtures, we theoretically study the problem of ultracold atomic impurities immersed i
It is shown that the distinct oscillations of the purity of the single-particle density matrix for many-body open quantum systems with balanced gain and loss reported by Dast et al. [Phys. Rev. A 93, 033617 (2016)] can also be found in closed quantum
Two component (spinor) Bose-Einstein condensates (BECs) are considered as the nodes of an interconnected quantum network. Unlike standard single-system qubits, in a BEC the quantum information is duplicated in a large number of identical bosonic part