ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial solitons and stability in self-focusing and defocusing Kerr nonlinear media with generalized PT-symmetric Scarff-II potentials

149   0   0.0 ( 0 )
 نشر من قبل Z Yan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a unified theoretical study of the bright solitons governed by self-focusing and defocusing nonlinear Schrodinger (NLS) equations with generalized parity-time (PT)-symmetric Scarff II potentials. Particularly, a PT-symmetric k-wavenumber Scarff II potential and a multi-well Scarff II potential are considered, respectively. For the k-wavenumber Scarff II potential, the parameter space can be divided into different regions, corresponding to unbroken and broken PT-symmetry and the bright solitons for self-focusing and defocusing Kerr nonlinearities. For the multi-well Scarff II potential the bright solitons can be obtained by using a periodically space-modulated Kerr nonlinearity. The linear stability of bright solitons with PT-symmetric k-wavenumber and multi-well Scarff II potentials is analyzed in details using numerical simulations. Stable and unstable bright solitons are found in both regions of unbroken and broken PT-symmetry due to the existence of the nonlinearity. Furthermore, the bright solitons in three-dimensional self-focusing and defocusing NLS equations with a generalized PT-symmetric Scarff II potential are explored. This may have potential applications in the field of optical information transmission and processing based on optical solitons in nonlinear dissipative but PT-symmetric systems.



قيم البحث

اقرأ أيضاً

Existence and stability of PT-symmetric gap solitons in a periodic structure with defocusing nonlocal nonlinearity are studied both theoretically and numerically. We find that, for any degree of nonlocality, gap solitons are always unstable in the pr esence of an imaginary potential. The instability manifests itself as a lateral drift of solitons due to an unbalanced particle flux. We also demonstrate that the perturbation growth rate is proportional to the amount of gain (loss), thus predicting the observability of stable gap solitons for small imaginary potentials.
This note examines Gross-Pitaevskii equations with PT-symmetric potentials of the Wadati type: $V=-W^2+iW_x$. We formulate a recipe for the construction of Wadati potentials supporting exact localised solutions. The general procedure is exemplified b y equations with attractive and repulsive cubic nonlinearity bearing a variety of bright and dark solitons.
In this work we analyze PT-symmetric double-well potentials based on a two-mode picture. We reduce the problem into a PT-symmetric dimer and illustrate that the latter has effectively two fundamental bifurcations, a pitchfork (symmetry-breaking bifur cation) and a saddle-center one, which is the nonlinear analog of the PT-phase-transition. It is shown that the symmetry breaking leads to ghost states (amounting to growth or decay); although these states are not true solutions of the original continuum problem, the systems dynamics closely follows them, at least in its metastable evolution. Past the second bifurcation, there are no longer states of the original continuum system. Nevertheless, the solutions can be analytically continued to yield a new pair of branches, which is also identified and dynamically examined. Our explicit analytical results for the dimer are directly compared to the full continuum problem, yielding a good agreement.
We consider the Cauchy problem for the Gross-Pitaevskii (GP) equation. Using the DBAR generalization of the nonlinear steepest descent method of Deift and Zhou we derive the leading order approximation to the solution of the GP in the solitonic regio n of space time $|x| < 2t$ for large times and provide bounds for the error which decay as $t to infty$ for a general class of initial data whose difference from the non-vanishing background possesss a fixed number of finite moments and derivatives. Using properties of the scattering map for (GP) we derive as a corollary an asymptotic stability result for initial data which are sufficiently close to the N-dark soliton solutions of (GP).
We construct exact localised solutions of the PT-symmetric Gross-Pitaevskii equation with an attractive cubic nonlinearity. The trapping potential has the form of two $delta$-function wells, where one well loses particles while the other one is fed w ith atoms at an equal rate. The parameters of the constructed solutions are expressible in terms of the roots of a system of two transcendental algebraic equations. We also furnish a simple analytical treatment of the linear Schrodinger equation with the PT-symmetric double-$delta$ potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا