ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopy is an indispensable tool in understanding the structures and dynamics of molecular systems. However computational modelling of spectroscopy is challenging due to the exponential scaling of computational complexity with system sizes unles s drastic approximations are made. Quantum computer could potentially overcome these classically intractable computational tasks, but existing approaches using quantum computers to simulate spectroscopy can only handle isolated and static molecules. In this work we develop a workflow that combines multi-scale modeling and time-dependent variational quantum algorithm to compute the linear spectroscopy of systems interacting with their condensed-phase environment via the relevant time correlation function. We demonstrate the feasibility of our approach by numerically simulating the UV-Vis absorption spectra of organic semiconductors. We show that our dynamical approach captures several spectral features that are otherwise overlooked by static methods. Our method can be directly used for other linear condensed-phase spectroscopy and could potentially be extended to nonlinear multi-dimensional spectroscopy.
Variational quantum algorithms (VQAs) are widely speculated to deliver quantum advantages for practical problems under the quantum-classical hybrid computational paradigm in the near term. Both theoretical and practical developments of VQAs share man y similarities with those of deep learning. For instance, a key component of VQAs is the design of task-dependent parameterized quantum circuits (PQCs) as in the case of designing a good neural architecture in deep learning. Partly inspired by the recent success of AutoML and neural architecture search (NAS), quantum architecture search (QAS) is a collection of methods devised to engineer an optimal task-specific PQC. It has been proven that QAS-designed VQAs can outperform expert-crafted VQAs under various scenarios. In this work, we propose to use a neural network based predictor as the evaluation policy for QAS. We demonstrate a neural predictor guided QAS can discover powerful PQCs, yielding state-of-the-art results for various examples from quantum simulation and quantum machine learning. Notably, neural predictor guided QAS provides a better solution than that by the random-search baseline while using an order of magnitude less of circuit evaluations. Moreover, the predictor for QAS as well as the optimal ansatz found by QAS can both be transferred and generalized to address similar problems.
Quantum architecture search (QAS) is the process of automating architecture engineering of quantum circuits. It has been desired to construct a powerful and general QAS platform which can significantly accelerate current efforts to identify quantum a dvantages of error-prone and depth-limited quantum circuits in the NISQ era. Hereby, we propose a general framework of differentiable quantum architecture search (DQAS), which enables automated designs of quantum circuits in an end-to-end differentiable fashion. We present several examples of circuit design problems to demonstrate the power of DQAS. For instance, unitary operations are decomposed into quantum gates, noisy circuits are re-designed to improve accuracy, and circuit layouts for quantum approximation optimization algorithm are automatically discovered and upgraded for combinatorial optimization problems. These results not only manifest the vast potential of DQAS being an essential tool for the NISQ application developments, but also present an interesting research topic from the theoretical perspective as it draws inspirations from the newly emerging interdisciplinary paradigms of differentiable programming, probabilistic programming, and quantum programming.
We propose a quantum algorithm for training nonlinear support vector machines (SVM) for feature space learning where classical input data is encoded in the amplitudes of quantum states. Based on the classical SVM-perf algorithm of Joachims, our algor ithm has a running time which scales linearly in the number of training examples $m$ (up to polylogarithmic factors) and applies to the standard soft-margin $ell_1$-SVM model. In contrast, while classical SVM-perf has demonstrated impressive performance on both linear and nonlinear SVMs, its efficiency is guaranteed only in certain cases: it achieves linear $m$ scaling only for linear SVMs, where classification is performed in the original input data space, or for the special cases of low-rank or shift-invariant kernels. Similarly, previously proposed quantum algorithms either have super-linear scaling in $m$, or else apply to different SVM models such as the hard-margin or least squares $ell_2$-SVM which lack certain desirable properties of the soft-margin $ell_1$-SVM model. We classically simulate our algorithm and give evidence that it can perform well in practice, and not only for asymptotically large data sets.
Neural-Network Quantum State (NQS) has attracted significant interests as a powerful wave-function ansatz to model quantum phenomena. In particular, a variant of NQS based on the restricted Boltzmann machine (RBM) has been adapted to model the ground state of spin lattices and the electronic structures of small molecules in quantum devices. Despite these progresses, significant challenges remain with the RBM-NQS based quantum simulations. In this work, we present a state-preparation protocol to generate a specific set of complex-valued RBM-NQS, that we name the unitary-coupled RBM-NQS, in quantum circuits. This is a crucial advancement as all prior works deal exclusively with real-valued RBM-NQS for quantum algorithms. With this novel scheme, we achieve (1) modeling complex-valued wave functions, (2) using as few as one ancilla qubit to simulate $M$ hidden spins in an RBM architecture, and (3) avoiding post-selections to improve scalability.
Understanding non-equilibrium heat transport is crucial for controling heat flow in nano-scale systems. We study thermal energy transfer in a generalized non-equilibrium spin-boson model (NESB) with non-commutative system-bath coupling operators and discover unusual transport properties. Compared to the conventional NESB, the heat current is greatly enhanced by rotating the coupling operators. Constructive contribution to thermal rectification can be optimized when two sources of asymmetry, system-bath coupling strength and coupling operators, coexist. At the weak coupling and the adiabatic limit, the scaling dependence of heat current on the coupling strength and the system energy gap changes drastically when the coupling operators become non-commutative. These scaling relations can further be explained analytically by the non-equilibrium polaron-transformed Redfield equation. These novel transport properties, arising from the pure quantum effect of non-commutative coupling operators, should generally appear in other non-equilibrium set-ups and driven-systems.
We introduce a new molecular dataset, named Alchemy, for developing machine learning models useful in chemistry and material science. As of June 20th 2019, the dataset comprises of 12 quantum mechanical properties of 119,487 organic molecules with up to 14 heavy atoms, sampled from the GDB MedChem database. The Alchemy dataset expands the volume and diversity of existing molecular datasets. Our extensive benchmarks of the state-of-the-art graph neural network models on Alchemy clearly manifest the usefulness of new data in validating and developing machine learning models for chemistry and material science. We further launch a contest to attract attentions from researchers in the related fields. More details can be found on the contest website footnote{https://alchemy.tencent.com}. At the time of benchamrking experiment, we have generated 119,487 molecules in our Alchemy dataset. More molecular samples are generated since then. Hence, we provide a list of molecules used in the reported benchmarks.
Graph Neural Networks (GNNs) achieve an impressive performance on structured graphs by recursively updating the representation vector of each node based on its neighbors, during which parameterized transformation matrices should be learned for the no de feature updating. However, existing propagation schemes are far from being optimal since they do not fully utilize the relational information between nodes. We propose the information maximizing graph neural networks (IGNN), which maximizes the mutual information between edge states and transform parameters. We reformulate the mutual information as a differentiable objective via a variational approach. We compare our model against several recent variants of GNNs and show that our model achieves the state-of-the-art performance on multiple tasks including quantum chemistry regression on QM9 dataset, generalization capability from QM9 to larger molecular graphs, and prediction of molecular bioactivities relevant for drug discovery. The IGNN model is based on an elegant and fundamental idea in information theory as explained in the main text, and it could be easily generalized beyond the contexts of molecular graphs considered in this work. To encourage more future work in this area, all datasets and codes used in this paper will be released for public access.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا