ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of Condensed-Phase Spectroscopy with Near-term Digital Quantum Computer

75   0   0.0 ( 0 )
 نشر من قبل Chee Kong Lee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectroscopy is an indispensable tool in understanding the structures and dynamics of molecular systems. However computational modelling of spectroscopy is challenging due to the exponential scaling of computational complexity with system sizes unless drastic approximations are made. Quantum computer could potentially overcome these classically intractable computational tasks, but existing approaches using quantum computers to simulate spectroscopy can only handle isolated and static molecules. In this work we develop a workflow that combines multi-scale modeling and time-dependent variational quantum algorithm to compute the linear spectroscopy of systems interacting with their condensed-phase environment via the relevant time correlation function. We demonstrate the feasibility of our approach by numerically simulating the UV-Vis absorption spectra of organic semiconductors. We show that our dynamical approach captures several spectral features that are otherwise overlooked by static methods. Our method can be directly used for other linear condensed-phase spectroscopy and could potentially be extended to nonlinear multi-dimensional spectroscopy.



قيم البحث

اقرأ أيضاً

We discuss in detail the implementation of an open-system quantum simulator with Rydberg states of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well as dissipative dynamics of complex spin models involvi ng many-body interactions and constraints. The central building block of the simulation scheme is constituted by a mesoscopic Rydberg gate that permits the entanglement of several atoms in an efficient, robust and quick protocol. In addition, optical pumping on ancillary atoms provides the dissipative ingredient for engineering the coupling between the system and a tailored environment. As an illustration, we discuss how the simulator enables the simulation of coherent evolution of quantum spin models such as the two-dimensional Heisenberg model and Kitaevs toric code, which involves four-body spin interactions. We moreover show that in principle also the simulation of lattice fermions can be achieved. As an example for controlled dissipative dynamics, we discuss ground state cooling of frustration-free spin Hamiltonians.
Quantum computational chemistry is a potential application of quantum computers that is expected to effectively solve several quantum-chemistry problems, particularly the electronic structure problem. Quantum computational chemistry can be compared t o the conventional computational devices. This review comprehensively investigates the applications and overview of quantum computational chemistry, including a review of the Hartree-Fock method for quantum information scientists. Quantum algorithms, quantum phase estimation, and variational quantum eigensolver, have been applied to the post-Hartree-Fock method.
The practical use of many types of near-term quantum computers requires accounting for their limited connectivity. One way of overcoming limited connectivity is to insert swaps in the circuit so that logical operations can be performed on physically adjacent qubits, which we refer to as solving the `routing via matchings problem. We address the routing problem for families of quantum circuits defined by a hypergraph wherein each hyperedge corresponds to a potential gate. Our main result is that any unordered set of $k$-qubit gates on distinct $k$-qubit subsets of $n$ logical qubits can be ordered and parallelized in $O(n^{k-1})$ depth using a linear arrangement of $n$ physical qubits; the construction is completely general and achieves optimal scaling in the case where gates acting on all $binom{n}{k}$ sets of $k$ qubits are desired. We highlight two classes of problems for which our method is particularly useful. First, it applies to sets of mutually commuting gates, as in the (diagonal) phase separators of Quantum Alternating Operator Ansatz (Quantum Approximate Optimization Algorithm) circuits. For example, a single level of a QAOA circuit for Maximum Cut can be implemented in linear depth, and a single level for $3$-SAT in quadratic depth. Second, it applies to sets of gates that do not commute but for which compilation efficiency is the dominant criterion in their ordering. In particular, it can be adapted to Trotterized time-evolution of fermionic Hamiltonians under the Jordan-Wigner transformation, and also to non-standard mixers in QAOA. Using our method, a single Trotter step of the electronic structure Hamiltonian in an arbitrary basis of $n$ orbitals can be done in $O(n^3)$ depth while a Trotter step of the unitary coupled cluster singles and doubles method can be implemented in $O(n^2 eta)$ depth, where $eta$ is the number of electrons.
Including quantum mechanical effects on the dynamics of nuclei in the condensed phase is challenging, because the complexity of exact methods grows exponentially with the number of quantum degrees of freedom. Efforts to circumvent these limitations c an be traced down to two approaches: methods that treat a small subset of the degrees of freedom with rigorous quantum mechanics, considering the rest of the system as a static or classical environment, and methods that treat the whole system quantum mechanically, but using approximate dynamics. Here we perform a systematic comparison between these two philosophies for the description of quantum effects in vibrational spectroscopy, taking the Embedded Local Monomer (LMon) model and a mixed quantum-classical (MQC) model as representatives of the first family of methods, and centroid molecular dynamics (CMD) and thermostatted ring polymer molecular dynamics (TRPMD) as examples of the latter. We use as benchmarks D$_2$O doped with HOD and pure H$_2$O at three distinct thermodynamic state points (ice Ih at 150K, and the liquid at 300K and 600K), modeled with the simple q-TIP4P/F potential energy and dipole moment surfaces. With few exceptions the different techniques yield IR absorption frequencies that are consistent with one another within a few tens of cm$^{-1}$. Comparison with classical molecular dynamics demonstrates the importance of nuclear quantum effects up to the highest temperature, and a detailed discussion of the discrepancies between the various methods let us draw some (circumstantial) conclusions about the impact of the very different approximations that underlie them. Such cross validation between radically different approaches could indicate a way forward to further improve the state of the art in simulations of condensed-phase quantum dynamics.
Molecules are the most demanding quantum systems to be simulated by quantum computers because of their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh et al. (Nature Photon., 9, 615 (2015)) showed that a mul ti-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we report the first experimental demonstration of molecular vibrational spectroscopy of SO$_{2}$ with a trapped-ion system. In our realization, the molecular scattering operation is decomposed to a series of elementary quantum optical operations, which are implemented through Raman laser beams, resulting in a multimode Gaussian (Bogoliubov) transformation. The molecular spectroscopic signal is reconstructed from the collective projection measurements on phonon modes of the trapped-ion system. Our experimental demonstration would pave the way to large-scale molecular quantum simulations, which are classically intractable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا