ترغب بنشر مسار تعليمي؟ اضغط هنا

Alchemy: A Quantum Chemistry Dataset for Benchmarking AI Models

124   0   0.0 ( 0 )
 نشر من قبل Pengfei Chen
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new molecular dataset, named Alchemy, for developing machine learning models useful in chemistry and material science. As of June 20th 2019, the dataset comprises of 12 quantum mechanical properties of 119,487 organic molecules with up to 14 heavy atoms, sampled from the GDB MedChem database. The Alchemy dataset expands the volume and diversity of existing molecular datasets. Our extensive benchmarks of the state-of-the-art graph neural network models on Alchemy clearly manifest the usefulness of new data in validating and developing machine learning models for chemistry and material science. We further launch a contest to attract attentions from researchers in the related fields. More details can be found on the contest website footnote{https://alchemy.tencent.com}. At the time of benchamrking experiment, we have generated 119,487 molecules in our Alchemy dataset. More molecular samples are generated since then. Hence, we provide a list of molecules used in the reported benchmarks.

قيم البحث

اقرأ أيضاً

Due to increasing amounts of data and compute resources, deep learning achieves many successes in various domains. The application of deep learning on the mobile and embedded devices is taken more and more attentions, benchmarking and ranking the AI abilities of mobile and embedded devices becomes an urgent problem to be solved. Considering the model diversity and framework diversity, we propose a benchmark suite, AIoTBench, which focuses on the evaluation of the inference abilities of mobile and embedded devices. AIoTBench covers three typical heavy-weight networks: ResNet50, InceptionV3, DenseNet121, as well as three light-weight networks: SqueezeNet, MobileNetV2, MnasNet. Each network is implemented by three frameworks which are designed for mobile and embedded devices: Tensorflow Lite, Caffe2, Pytorch Mobile. To compare and rank the AI capabilities of the devices, we propose two unified metrics as the AI scores: Valid Images Per Second (VIPS) and Valid FLOPs Per Second (VOPS). Currently, we have compared and ranked 5 mobile devices using our benchmark. This list will be extended and updated soon after.
Few-shot classification refers to learning a classifier for new classes given only a few examples. While a plethora of models have emerged to tackle it, we find the procedure and datasets that are used to assess their progress lacking. To address thi s limitation, we propose Meta-Dataset: a new benchmark for training and evaluating models that is large-scale, consists of diverse datasets, and presents more realistic tasks. We experiment with popular baselines and meta-learners on Meta-Dataset, along with a competitive method that we propose. We analyze performance as a function of various characteristics of test tasks and examine the models ability to leverage diverse training sources for improving their generalization. We also propose a new set of baselines for quantifying the benefit of meta-learning in Meta-Dataset. Our extensive experimentation has uncovered important research challenges and we hope to inspire work in these directions.
There has been rapidly growing interest in meta-learning as a method for increasing the flexibility and sample efficiency of reinforcement learning. One problem in this area of research, however, has been a scarcity of adequate benchmark tasks. In ge neral, the structure underlying past benchmarks has either been too simple to be inherently interesting, or too ill-defined to support principled analysis. In the present work, we introduce a new benchmark for meta-RL research, which combines structural richness with structural transparency. Alchemy is a 3D video game, implemented in Unity, which involves a latent causal structure that is resampled procedurally from episode to episode, affording structure learning, online inference, hypothesis testing and action sequencing based on abstract domain knowledge. We evaluate a pair of powerful RL agents on Alchemy and present an in-depth analysis of one of these agents. Results clearly indicate a frank and specific failure of meta-learning, providing validation for Alchemy as a challenging benchmark for meta-RL. Concurrent with this report, we are releasing Alchemy as public resource, together with a suite of analysis tools and sample agent trajectories.
With the growing complexity of deep learning methods adopted in practical applications, there is an increasing and stringent need to explain and interpret the decisions of such methods. In this work, we focus on explainable AI and propose a novel gen eric and model-agnostic framework for synthesizing input exemplars that maximize a desired response from a machine learning model. To this end, we use a generative model, which acts as a prior for generating data, and traverse its latent space using a novel evolutionary strategy with momentum updates. Our framework is generic because (i) it can employ any underlying generator, e.g. Variational Auto-Encoders (VAEs) or Generative Adversarial Networks (GANs), and (ii) it can be applied to any input data, e.g. images, text samples or tabular data. Since we use a zero-order optimization method, our framework is model-agnostic, in the sense that the machine learning model that we aim to explain is a black-box. We stress out that our novel framework does not require access or knowledge of the internal structure or the training data of the black-box model. We conduct experiments with two generative models, VAEs and GANs, and synthesize exemplars for various data formats, image, text and tabular, demonstrating that our framework is generic. We also employ our prototype synthetization framework on various black-box models, for which we only know the input and the output formats, showing that it is model-agnostic. Moreover, we compare our framework (available at https://github.com/antoniobarbalau/exemplar) with a model-dependent approach based on gradient descent, proving that our framework obtains equally-good exemplars in a shorter computational time.
The performance of optimizers, particularly in deep learning, depends considerably on their chosen hyperparameter configuration. The efficacy of optimizers is often studied under near-optimal problem-specific hyperparameters, and finding these settin gs may be prohibitively costly for practitioners. In this work, we argue that a fair assessment of optimizers performance must take the computational cost of hyperparameter tuning into account, i.e., how easy it is to find good hyperparameter configurations using an automatic hyperparameter search. Evaluating a variety of optimizers on an extensive set of standard datasets and architectures, our results indicate that Adam is the most practical solution, particularly in low-budget scenarios.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا