ترغب بنشر مسار تعليمي؟ اضغط هنا

An important ingredient for applications of nuclear physics to e.g. astrophysics or nuclear energy are the cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not possible, indirect methods like (d,p) reac tions must be used instead. Those (d,p) reactions may be viewed as effective three-body reactions and described with Faddeev techniques. An additional challenge posed by (d,p) reactions involving heavier nuclei is the treatment of the Coulomb force. To avoid numerical complications in dealing with the screening of the Coulomb force, recently a new approach using the Coulomb distorted basis in momentum space was suggested. In order to implement this suggestion, one needs not only to derive a separable representation of neutron- and proton-nucleus optical potentials, but also compute the Coulomb distorted form factors in this basis.
Recently, a new approach for solving the three-body problem for (d,p) reactions in the Coulomb-distorted basis in momentum space was proposed. Important input quantities for such calculations are the scattering matrix elements for proton- and neutron -nucleus scattering. We present a generalization of the Ernst-Shakin-Thaler scheme in which a momentum space separable representation of proton-nucleus scattering matrix elements can be calculated in the Coulomb basis. The viability of this method is demonstrated by comparing S-matrix elements obtained for p$+^{48}$Ca and p$+^{208}$Pb for a phenomenological optical potential with corresponding coordinate space calculations.
Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible , indirect methods, e.g. (d,p) reactions, should be used.} Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. While there exist several separable representations for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily available in separable form. The purpose of this paper is to introduce a separable representation for complex phenomenological optical potentials of Woods-Saxon type. Results: Starting from a global optical potential, a separable representation thereof is introduced based on the Ernst-Shakin-Thaler (EST) scheme. This scheme is generalized to non-hermitian potentials. Applications to n$+^{48}$Ca, n$+^{132}$Sn and n$+^{208}$Pb are investigated for energies from 0 to 50 MeV and the quality of the representation is examined. Conclusions: We find a good description of the on-shell t-matrix for all systems with rank up to 5. The required rank depends inversely on the angular momentum. The resulting separable interaction exhibits a different off-shell behavior compared to the original potential, reducing the high momentum contributions.
Elastic scattering observables (differential cross section and analyzing power) are calculated for the reaction $^6$He(p,p)$^6$He at projectile energies starting at 71 MeV/nucleon. The optical potential needed to describe the reaction is based on a m icroscopic Watson first-order folding potential, which explicitly takes into account that the two neutrons outside the $^4$He-core occupy an open p-shell. The folding of the single-particle harmonic oscillator density matrix with the nucleon-nucleon t-matrix leads for this case to new terms not present in traditional folding optical potentials for closed shell nuclei. The effect of those new terms on the elastic scattering observables is investigated. Furthermore, the influence of an exponential tail of the p-shell wave functions on the scattering observables is studied, as well as the sensitivity of the observables to variations of matter and charge radius. Finally elastic scattering observables for the reaction $^8$He(p,p)$^8$He are presented at selected projectile energies.
The differential cross section and the analyzing power are calculated for elastic scattering of $^6$He from a proton target using a microscopic folding optical potential, in which the $^6$He nucleus is described in terms of a $^4$He-core with two add itional neutrons in the valence p-shell. In contrast to previous work of that nature, all contributions from the interaction of the valence neutrons with the target protons are taken into account.
143 - Ch. Elster , L. Hlophe 2012
A current interest in nuclear reactions, specifically with rare isotopes concentrates on their reaction with neutrons, in particular neutron capture. In order to facilitate reactions with neutrons one must use indirect methods using deuterons as beam or target of choice. For adding neutrons, the most common reaction is the (d,p) reaction, in which the deuteron breaks up and the neutron is captured by the nucleus. Those (d,p) reactions may be viewed as a three-body problem in a many-body context. This contribution reports on a feasibility study for describing phenomenological nucleon-nucleus optical potentials in momentum space in a separable form, so that they may be used for Faddeev calculations of (d,p) reactions.
218 - S. P. Weppner , Ch. Elster 2011
Elastic scattering observables (differential cross section and analyzing power) are calculated for the reaction $^6$He(p,p)$^6$He at projectile energies starting at 71 MeV/nucleon. The optical potential needed to describe the reaction is derived desc ribing $^6$He in terms of a $^4$He-core and two neutrons. The Watson first order multiple scattering ansatz is extended to accommodate the internal dynamics of a composite cluster model for the $^6$He nucleus scattering from a nucleon projectile. The calculations are compared with the recent experiments at the projectile energy of 71 MeV/nucleon. In addition, differential cross sections and analyzing powers are calculated at selected higher energies.
We extend a new treatment proposed for two-nucleon (2N) and three-nucleon (3N) bound states to 2N scattering. This technique takes momentum vectors as variables, thus, avoiding partial wave decomposition, and handles spin operators analytically. We a pply the general operator structure of a nucleon-nucleon (NN) potential to the NN T-matrix, which becomes a sum of six terms, each term being scalar products of spin operators and momentum vectors multiplied with scalar functions of vector momenta. Inserting this expansions of the NN force and T-matrix into the Lippmann-Schwinger equation allows to remove the spin dependence by taking traces and yields a set of six coupled equations for the scalar functions found in the expansion of the T-matrix.
A recently developed formulation for a direct treatment of the equations for two- and three-nucleon bound states as set of coupled equations of scalar functions depending only on vector momenta is extended to three-nucleon scattering. Starting from t he spin-momentum dependence occurring as scalar products in two- and three-nucleon forces together with other scalar functions, we present the Faddeev multiple scattering series in which order by order the spin-degrees can be treated analytically leading to 3D integrations over scalar functions depending on momentum vectors only. Such formulation is especially important in view of awaiting extension of 3N Faddeev calculations to projectile energies above the pion production threshold and applications of chiral perturbation theory 3N forces, which are to be most efficiently treated directly in such three-dimensional formulation without having to expand these forces into a partial wave basis.
Motivated by a recent measurement of proton-proton elastic scattering observables up to 3.0 GeV, we investigate the description of those data within models of the nucleon-nucleon (NN) interaction valid above the pion production threshold. In addition to including the well known Delta resonance we incorporate two low-lying N* resonances, the N*(1440) and the N*(1535), and study their influence on pp and np observables for projectile laboratory kinetic energies up to 1.5 GeV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا