ﻻ يوجد ملخص باللغة العربية
The differential cross section and the analyzing power are calculated for elastic scattering of $^6$He from a proton target using a microscopic folding optical potential, in which the $^6$He nucleus is described in terms of a $^4$He-core with two additional neutrons in the valence p-shell. In contrast to previous work of that nature, all contributions from the interaction of the valence neutrons with the target protons are taken into account.
We present a reliable double-folding (DF) model for $^{4}$He-nucleus scattering, using the Melbourne $g$-matrix nucleon-nucleon interaction that explains nucleon-nucleus scattering with no adjustable parameter. In the DF model, only the target densit
We construct a microscopic optical potential including breakup effects for elastic scattering of weakly-binding projectiles within the Glauber model, in which a nucleon-nucleus potential is derived by the $g$-matrix folding model. The derived microsc
We construct nucleonic microscopic optical potentials by combining the Greens function approach with the coupled-cluster method for $rm{^{40}Ca}$ and $rm{^{48}Ca}$. For the computation of the ground-state of $rm{^{40}Ca}$ and $rm{^{48}Ca}$, we use th
Microscopic optical potentials have been successful in describing nucleon-nucleus and nucleus-nucleus scattering. Some essential ingredients of the framework, however, have not been examined in detail. Applicability of the microscopic folding model i
Elastic scattering observables (differential cross section and analyzing power) are calculated for the reaction $^6$He(p,p)$^6$He at projectile energies starting at 71 MeV/nucleon. The optical potential needed to describe the reaction is based on a m