ترغب بنشر مسار تعليمي؟ اضغط هنا

We classify integral modular categories of dimension pq^4 and p^2q^2 where p and q are distinct primes. We show that such categories are always group-theoretical except for categories of dimension 4q^2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara-Yamagami categories and quantum groups. We show that a non-group-theoretical integral modular category of dimension 4q^2 is equivalent to either one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quantum group.
We develop a theory of localization for braid group representations associated with objects in braided fusion categories and, more generally, to Yang-Baxter operators in monoidal categories. The essential problem is to determine when a family of brai d representations can be uniformly modelled upon a tensor power of a fixed vector space in such a way that the braid group generators act locally. Although related to the notion of (quasi-)fiber functors for fusion categories, remarkably, such localizations can exist for representations associated with objects of non-integral dimension. We conjecture that such localizations exist precisely when the object in question has dimension the square-root of an integer and prove several key special cases of the conjecture.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا