ﻻ يوجد ملخص باللغة العربية
We develop a theory of localization for braid group representations associated with objects in braided fusion categories and, more generally, to Yang-Baxter operators in monoidal categories. The essential problem is to determine when a family of braid representations can be uniformly modelled upon a tensor power of a fixed vector space in such a way that the braid group generators act locally. Although related to the notion of (quasi-)fiber functors for fusion categories, remarkably, such localizations can exist for representations associated with objects of non-integral dimension. We conjecture that such localizations exist precisely when the object in question has dimension the square-root of an integer and prove several key special cases of the conjecture.
We give a description of the centralizer algebras for tensor powers of spin objects in the pre-modular categories $SO(N)_2$ (for $N$ odd) and $O(N)_2$ (for $N$ even) in terms of quantum $(n-1)$-tori, via non-standard deformations of $Umathfrak{so}_N$
We prove that representations of the braid groups coming from weakly group-theoretical braided fusion categories have finite images.
Path algebras are a convenient way of describing decompositions of tensor powers of an object in a tensor category. If the category is braided, one obtains representations of the braid groups $B_n$ for all $nin N$. We say that such representations ar
A deeper understanding of recent computations of the Brauer group of Hopf algebras is attained by explaining why a direct product decomposition for this group holds and describing the non-interpreted factor occurring in it. For a Hopf algebra $B$ in
We establish automorphisms with closed formulas on quasi-split $imath$quantum groups of symmetric Kac-Moody type associated to restricted Weyl groups. The proofs are carried out in the framework of $imath$Hall algebras and reflection functors, thanks