ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the stabilizability of discrete-time linear switched systems, when the sole control action of the controller is the switching signal, and when the controller has access to the state of the system in real time. Despite their apparent si mplicity, determining if such systems are stabilizable appears to be a very challenging problem, and basic examples have been known for long, for which the stabilizability question is open. We provide new results allowing us to bound the so-called stabilizability radius, which characterizes the stabilizability property of discrete-time linear switched systems. These results allow us to compute significantly improved explicit lower bounds on the stabilizability radius for the above-mentioned examples. As a by-product, we exhibit a discontinuity property for this problem, which brings theoretical understanding of its complexity.
We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of non-interacting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the mid range velocity.
Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shri nking linking range, the number of isolated nodes is Poisson distributed, and the probability of no isolated nodes is equal to the probability the whole graph is connected. Here we examine these properties for several self-similar node distributions, including smooth and fractal, uniform and nonuniform, and finitely ramified or otherwise. We show that nonuniformity can break the Poisson distribution property, but it strengthens the link between isolation and connectivity. It also stretches out the connectivity transition. Finite ramification is another mechanism for lack of connectivity. The same considerations apply to fractal distributions as smooth, with some technical differences in evaluation of the integrals and analytical arguments.
115 - Carl P. Dettmann 2014
The Lorentz gas, a point particle making mirror-like reflections from an extended collection of scatterers, has been a useful model of deterministic diffusion and related statistical properties for over a century. This survey summarises recent result s, including periodic and aperiodic models, finite and infinite horizon, external fields, smooth or polygonal obstacles, and in the Boltzmann-Grad limit. New results are given for several moving particles and for obstacles with flat points. Finally, a variety of applications are presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا