ﻻ يوجد ملخص باللغة العربية
We investigate the stabilizability of discrete-time linear switched systems, when the sole control action of the controller is the switching signal, and when the controller has access to the state of the system in real time. Despite their apparent simplicity, determining if such systems are stabilizable appears to be a very challenging problem, and basic examples have been known for long, for which the stabilizability question is open. We provide new results allowing us to bound the so-called stabilizability radius, which characterizes the stabilizability property of discrete-time linear switched systems. These results allow us to compute significantly improved explicit lower bounds on the stabilizability radius for the above-mentioned examples. As a by-product, we exhibit a discontinuity property for this problem, which brings theoretical understanding of its complexity.
We provide out-of-sample certificates on the controlled invariance property of a given set with respect to a class of black-box linear systems. Specifically, we consider linear time-invariant models whose state space matrices are known only to belong
We propose an extension of the theory of control sets to the case of inputs satisfying a dwell-time constraint. Although the class of such inputs is not closed under concatenation, we propose a suitably modified definition of control sets that allows
This paper deals with the stability analysis problem of discrete-time switched linear systems with ranged dwell time. A novel concept called L-switching-cycle is proposed, which contains sequences of multiple activation cycles satisfying the prescrib
We consider the effect of parametric uncertainty on properties of Linear Time Invariant systems. Traditional approaches to this problem determine the worst-case gains of the system over the uncertainty set. Whilst such approaches are computationally
Motivated by an open problem posed by J.P. Hespanha, we extend the notion of Barabanov norm and extremal trajectory to classes of switching signals that are not closed under concatenation. We use these tools to prove that the finiteness of the L2-gai