ترغب بنشر مسار تعليمي؟ اضغط هنا

Transition from normal to ballistic diffusion in a one-dimensional impact system

417   0   0.0 ( 0 )
 نشر من قبل Andr\\'e Livorati
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of non-interacting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the mid range velocity.



قيم البحث

اقرأ أيضاً

116 - V. Balakrishnan , 2001
We consider the motion of a test particle in a one-dimensional system of equal-mass point particles. The test particle plays the role of a microscopic piston that separates two hard-point gases with different concentrations and arbitrary initial velo city distributions. In the homogeneous case when the gases on either side of the piston are in the same macroscopic state, we compute and analyze the stationary velocity autocorrelation function C(t). Explicit expressions are obtained for certain typical velocity distributions, serving to elucidate in particular the asymptotic behavior of C(t). It is shown that the occurrence of a non-vanishing probability mass at zero velocity is necessary for the occurrence of a long-time tail in C(t). The conditions under which this is a $t^{-3}$ tail are determined. Turning to the inhomogeneous system with different macroscopic states on either side of the piston, we determine its effective diffusion coefficient from the asymptotic behavior of the variance of its position, as well as the leading behavior of the other moments about the mean. Finally, we present an interpretation of the effective noise arising from the dynamics of the two gases, and thence that of the stochastic process to which the position of any particle in the system reduces in the thermodynamic limit.
106 - R.Klages 2018
Motivated by electronic transport in graphene-like structures, we study the diffusion of a classical point particle in Fermi potentials situated on a triangular lattice. We call this system a soft Lorentz gas, as the hard disks in the conventional pe riodic Lorentz gas are replaced by soft repulsive scatterers. A thorough computational analysis yields both normal and anomalous (super) diffusion with an extreme sensitivity on model parameters. This is due to an intricate interplay between trapped and ballistic periodic orbits, whose existence is characterized by tongue-like structures in parameter space. These results hold even for small softness showing that diffusion in the paradigmatic hard Lorentz gas is not robust for realistic potentials, where we find an entirely different type of diffusion.
We present a driven diffusive model which we call the Bus Route Model. The model is defined on a one-dimensional lattice, with each lattice site having two binary variables, one of which is conserved (``buses) and one of which is non-conserved (``pas sengers). The buses are driven in a preferred direction and are slowed down by the presence of passengers who arrive with rate lambda. We study the model by simulation, heuristic argument and a mean-field theory. All these approaches provide strong evidence of a transition between an inhomogeneous ``jammed phase (where the buses bunch together) and a homogeneous phase as the bus density is increased. However, we argue that a strict phase transition is present only in the limit lambda -> 0. For small lambda, we argue that the transition is replaced by an abrupt crossover which is exponentially sharp in 1/lambda. We also study the coarsening of gaps between buses in the jammed regime. An alternative interpretation of the model is given in which the spaces between ``buses and the buses themselves are interchanged. This describes a system of particles whose mobility decreases the longer they have been stationary and could provide a model for, say, the flow of a gelling or sticky material along a pipe.
Recent years have seen an increasing interest in quantum chaos and related aspects of spatially extended systems, such as spin chains. However, the results are strongly system dependent, generic approaches suggest the presence of many-body localizati on while analytical calculations for certain system classes, here referred to as the ``self-dual case, prove adherence to universal (chaotic) spectral behavior. We address these issues studying the level statistics in the vicinity of the latter case, thereby revealing transitions to many-body localization as well as the appearance of several non-standard random-matrix universality classes.
The problem of characterizing low-temperature spin dynamics in antiferromagnetic spin chains has so far remained elusive. We reinvestigate it by focusing on isotropic antiferromagnetic chains whose low-energy effective field theory is governed by the quantum non-linear sigma model. We outline an exact non-perturbative theoretical approach to analyse the low-temperature behaviour in the vicinity of non-magnetized states, and obtain explicit expressions for the spin diffusion constant and the NMR relaxation rate, which we compare with previous theoretical results in the literature. Surprisingly, in SU(2)-invariant spin chains in the vicinity of half-filling we find a crossover from the semi-classical regime to a strongly interacting quantum regime characterized by zero spin Drude weight and diverging spin conductivity, indicating super-diffusive spin dynamics. The dynamical exponent of spin fluctuations is argued to belong to the Kardar-Parisi-Zhang universality class. Furthermore, by employing numerical tDMRG simulations, we find robust evidence that the anomalous spin transport persists also at high temperatures, irrespectively of the spectral gap and integrability of the model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا