ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a self-contained description of the wave-function matching (WFM) method to calculate electronic quantum transport properties of nanostructures using the Landauer-Buttiker approach. The method is based on a partition of the system between a central region (conductor) containing $N_S$ sites and an asymptotic region (leads) characterized by $N_P$ open channels. The two subsystems are linearly coupled and solved simultaneously using an efficient sparse linear solver. Invoking the sparsity of the Hamiltonian matrix representation of the central region, we show that the number of operations required by the WFM method in conductance calculations scales with $sim N_Stimes N_P$ for large $N_S$.
We investigate the excitonic spectrum of MoS$_2$ monolayers and calculate its optical absorption properties over a wide range of energies. Our approach takes into account the anomalous screening in two dimensions and the presence of a substrate, both cast by a suitable effective Keldysh potential. We solve the Bethe-Salpeter equation using as a basis a Slater-Koster tight-binding model parameterized to fit ab initio MoS$_2$ band structure calculations. The resulting optical conductivity is in good quantitative agreement with existing measurements up to ultraviolet energies. We establish that the electronic contributions to the C excitons arise not from states in the vicinity of the $Gamma$ point, but from a set of $k$-points over extended portions of the Brillouin zone. Our results reinforce the advantages of approaches based on effective models to expeditiously explore the properties and tunability of excitons in TMD systems.
We study the spin relaxation in graphene due to magnetic moments induced by defects. We propose and employ in our studies a microscopic model that describes magnetic impurity scattering processes mediated by charge puddles. This model incorporates th e spin texture related to the defect-induced state. We calibrate our model parameters using experimentally-inferred values. The results we obtain for the spin relaxation times are in very good agreement with experimental findings. Our study leads to a comprehensive explanation for the short spin relaxation times reported in the experimental literature. We also propose a new interpretation for the puzzling experimental observation of enhanced spin relaxation times in hydrogenated graphene samples in terms of a combined effect due to disorder configurations that lead to an increased coupling to the magnetic moments and the tunability of the defect-induced $pi$-like magnetism in graphene.
Inverted HgTe/CdTe quantum wells have been used as a platform for the realization of 2D topological insulators, bulk insulator materials with spin-helical metallic edges states protected by time-reversal symmetry. This work investigates the spectrum and the charge transport in HgTe/CdTe quantum well junctions both in the topological regime and in the absence of time-reversal symmetry. We model the system using the BHZ effective Hamiltonian and compute the transport properties using recursive Greens functions with a finite differences method. Specifically, we have studied the materials spatially-resolved conductance in a set-up with a gated central region, forming monopolar (n-n$^{prime}$-n) and heteropolar (n-p-n, n-TI-n) double junctions, which have been recently realized in experiments. We find regimes in which the edge states carry spin-polarized currents in the central region even in the presence of a small magnetic field, which breaks TRS. More interestingly, the conductance displays spin-dependent, Fabry-Perot-like oscillations as a function of the central gate voltage producing tunable, fully spin-polarized currents through the device.
The transport properties of nanostructured systems are deeply affected by the geometry of the effective connections to metallic leads. In this work we derive a conductance expression for interacting systems whose connectivity geometries do not meet t he Meir-Wingreen proportional coupling condition. As an interesting application, we consider a quantum dot connected coherently to tunable electronic cavity modes. The structure is shown to exhibit a well-defined Kondo effect over a wide range of coupling strengths between the two subsystems. In agreement with recent experimental results, the calculated conductance curves exhibit strong modulations and asymmetric behavior as different cavity modes are swept through the Fermi level. These conductance modulations occur, however, while maintaining robust Kondo singlet correlations of the dot with the electronic reservoir, a direct consequence of the lopsided nature of the device.
A multi-scale approach for the theoretical description of deformed phosphorene is presented. This approach combines a valence-force model to relate macroscopic strain to microscopic displacements of atoms and a tight-binding model with distance-depen dent hopping parameters to obtain electronic properties. The resulting self-consistent electromechanical model is suitable for large-scale modeling of phosphorene devices. We demonstrate this for the case of an inhomogeneously deformed phosphorene drum, which may be used as an exciton funnel.
We study the heat transport due to phonons in nanomechanical structures using a phase space representation of non-equilibrium Greens functions. This representation accounts for the atomic degrees of freedom making it particularly suited for the descr iption of small (molecular) junctions systems. We show that for the steady state limit our formalism correctly recovers the heuristic Landauer-like heat conductance for a quantum coherent molecular system coupled to thermal reservoirs. We find general expressions for the non-stationary heat current due to an external periodic drive. In both cases we discuss the quantum thermodynamic properties of the systems. We apply our formalism to the case of a diatomic molecular junction.
Here we address two nonequilibrium Greens functions approaches for a resonant tunneling structure under a sudden switch of a bias. Our aim is to stress that the time-dependent Keldysh formulation of Jauho, Wingreen and Meir, and the partition-free sc heme of Stefanucci and Almbladh are formally equivalent in the ubiquitous case of wide-band limit and noninteracting electrons, if leads and dot are in equilibrium before the time-dependent perturbation. We develop explicit closed formulas of the lesser Greens function and time-dependent current, reminding that the different integration limits preclude a face-to-face comparison of two approaches. This study sheds light on both practices, which are of great interest to the mesoscopic transport community.
We investigate the contribution of charge puddles to the non-vanishing conductivity minimum in disordered graphene flakes at the charge neutrality point. For that purpose, we study systems with a geometry that suppresses the transmission due to evane scent modes allowing to single out the effect of charge fluctuations in the transport properties. We use the recursive Greens functions technique to obtain local and total transmissions through systems that mimic vanishing density of states at the charge neutrality point in the presence of a local disordered local potential to model the charge puddles. Our microscopic model includes electron-electron interactions via a spin resolved Hubbard mean field term. We establish the relation between the charge puddle disorder potential and the electronic transmission at the charge neutrality point. We discuss the implications of our findings to high mobility graphene samples deposited on different substrates and provide a qualitative interpretation of recent experimental results.
We study the decay rate of the Loschmidt echo or fidelity in a chaotic system under a time-dependent perturbation $V(q,t)$ with typical strength $hbar/tau_{V}$. The perturbation represents the action of an uncontrolled environment interacting with th e system, and is characterized by a correlation length $xi_0$ and a correlation time $tau_0$. For small perturbation strengths or rapid fluctuating perturbations, the Loschmidt echo decays exponentially with a rate predicted by the Fermi Golden Rule, $1/tilde{tau}= tau_{c}/tau_{V}^2$, where typically $tau_{c} sim min[tau_{0},xi_0/v]$ with $v$ the particle velocity. Whenever the rate $1/tilde{tau}$ is larger than the Lyapunov exponent of the system, a perturbation independent Lyapunov decay regime arises. We also find that by speeding up the fluctuations (while keeping the perturbation strength fixed) the fidelity decay becomes slower, and hence, one can protect the system against decoherence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا