ترغب بنشر مسار تعليمي؟ اضغط هنا

We present predictions of centimeter and millimeter radio emission from reverse shocks in the early afterglows of gamma-ray bursts with the goal of determining their detectability with current and future radio facilities. Using a range of GRB propert ies, such as peak optical brightness and time, isotropic equivalent gamma-ray energy and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parametrization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. (2007) and Melandri et al. (2010) in which the typical frequency of the reverse shock was suggested to lie at radio, rather than optical wavelengths at early times, we show that the brightest and most distinct reverse-shock radio signatures are detectable up to 0.1 -- 1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects - typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical reverse-shock emission, we suggest that detection of polarized radio/mm emission will unambiguously confirm the presence of low-frequency reverse shocks at early time.
We use high--quality, multi-band observations of Swift GRB120404A, from gamma-ray to radio frequencies, together with the new hydrodynamics code of van Eerten et al. (2012) to test the standard synchrotron shock model. The evolution of the radio and optical afterglow, with its prominent optical rebrightening at t_rest 260-2600 s, is remarkably well modelled by a decelerating jet viewed close to the jet edge, combined with some early re-energization of the shock. We thus constrain the geometry of the jet with half-opening and viewing angles of 23 and 21 deg respectively and suggest that wide jets viewed off-axis are more common in GRBs than previously thought. We also derive the fireball microphysics parameters epsilon_B=2.4e-4 and epsilon_e=9.3e-2 and a circumburst density of n=240 cm^-3. The ability to self-consistently model the microphysics parameters and jet geometry in this way offers an alternative to trying to identify elusive canonical jet breaks at late times. The mismatch between the observed and model-predicted X-ray fluxes is explained by the local rather than the global cooling approximation in the synchrotron radiation model, constraining the microphysics of particle acceleration taking place in a relativistic shock and, in turn, emphasising the need for a more realistic treatment of cooling in future developments of theoretical models. Finally, our interpretation of the optical peak as due to the passage of the forward shock synchrotron frequency highlights the importance of high quality multi-band data to prevent some optical peaks from being erroneously attributed to the onset of fireball deceleration.
We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind, Swift, and Fermi, GRB 091024A has prompt emission episodes covering ~1300 s, accompani ed by bright and highly structured optical emission captured by various rapid-response facilities, including the 2-m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and SRO. We also observed the burst with 8- and 10-m class telescopes and determine the redshift to be z = 1.0924 pm 0.0004. We find no correlation between the optical and gamma-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (R_B ~ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the Konus-Wind data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (>~ 1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population.
71 - C.G. Mundell 2011
8.4-GHZ radio imaging study of an optically selected sample of early type Seyfert galaxies; comparison of images taken at two epochs reveals possible variation in the nuclear radio flux density in five of them over a seven year period. It is shown th at there is a possible correlation between the presence of nuclear radio variability and the absence of hundred parsec-scale radio emission, analogous with radio-loud AGN. Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognized in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio jet emission within the central 50 pc. Taken in combination with other Seyfert properties, these results suggest a paradigm of intermittent periods of quiescence and nuclear outburst across the Seyfert population and demonstrate the importance of investigating the temporal domain at radio wavelengths, which remains completely unexplored for faint radio-quiet AGN. Discovery of intermittent activity and radio flares has important implications for the AGN duty cycles and the origin of Ultra-High Energy Cosmic Rays. New radio facilities, such as the EVLA/VLBA, eMERLIN, LOFAR and eVLBI on the EVN, will revolutionise the study of radio-quiet AGN; in particular, the combination of increased sensitivity and sampling rate with high-angular resolution and automatic data reduction will open up the transient radio sky and bring major future breakthroughs.
121 - I.A. Steele 2010
The nature of the jets and the role of magnetic fields in gamma-ray bursts (GRB) remains unclear. In a baryon-dominated jet only weak, tangled fields generated in situ through shocks would be present. In an alternative model, jets are threaded with l arge scale magnetic fields that originate at the central engine and which accelerate and collimate the jets. The way to distinguish between the models is to measure the degree of polarization in early-time emission, however previous claims of gamma-ray polarization have been controversial. Here we report that the early optical emission from GRB 090102 was polarized at the level of P=10+/-1%, indicating the presence of large-scale fields originating in the expanding fireball. If the degree of polarization and its position angle were variable on timescales shorter than our 60-s exposure, then the peak polarization may have been larger than 10 per cent.
We use a sample of 19 Gamma Ray Bursts (GRBs) that exhibit single-peaked optical light curves to test the standard fireball model by investigating the relationship between the time of the onset of the afterglow and the temporal rising index. Our samp le includes GRBs and X-ray flashes for which we derive a wide range of initial Lorentz factors ($40 < Gamma < 450$). Using plausible model parameters the typical frequency of the forward shock is expected to lie close to the optical band; within this low typical frequency framework, we use the optical data to constrain $epsilon_e$ and show that values derived from the early time light curve properties are consistent with published typical values derived from other afterglow studies. We produce expected radio light curves by predicting the temporal evolution of the expected radio emission from forward and reverse shock components, including synchrotron self-absorption effects at early time. Although a number of the GRBs in this sample do not have published radio measurements, we demonstrate the effectiveness of this method in the case of {it Swift} GRB 090313, for which millimetric and centrimetric observations were available, and conclude that future detections of reverse-shock radio flares with new radio facilities such as the EVLA and ALMA will test the low frequency model and provide constraints on magnetic models.
46 - C.G. Mundell 2009
Comparison of 8.4-GHz radio images of a sample of 11 early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in 5 of them over a 7-yr period. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of ~100-pc-scale radio emission is seen. NGC2110 is the only source with significant extended radio structure and strong nuclear variability (>38% nuclear decline over seven years). Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognised in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio-jet emission within the central ~50 pc. If flares in radio light curves correspond to ejection of new relativistic components or emergence of shocks in the underlying flow, we suggest that radio jets may be intrinsically non-relativistic during quiescence, but that Seyferts, as black-hole driven AGN, have the capacity to accelerate relativistic jets during radio flares. Taken together with the increased detection rate of flat spectrum radio nuclei in Seyferts imaged at VLBI resolutions and the detection of variable water megamaser emission, our results support the paradigm of intermittent periods of quiescence and nuclear outburst across the Seyfert population. (Abridged).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا