ترغب بنشر مسار تعليمي؟ اضغط هنا

Ten per cent polarized optical emission from GRB 090102

163   0   0.0 ( 0 )
 نشر من قبل Dr Carole G. Mundell
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I.A. Steele




اسأل ChatGPT حول البحث

The nature of the jets and the role of magnetic fields in gamma-ray bursts (GRB) remains unclear. In a baryon-dominated jet only weak, tangled fields generated in situ through shocks would be present. In an alternative model, jets are threaded with large scale magnetic fields that originate at the central engine and which accelerate and collimate the jets. The way to distinguish between the models is to measure the degree of polarization in early-time emission, however previous claims of gamma-ray polarization have been controversial. Here we report that the early optical emission from GRB 090102 was polarized at the level of P=10+/-1%, indicating the presence of large-scale fields originating in the expanding fireball. If the degree of polarization and its position angle were variable on timescales shorter than our 60-s exposure, then the peak polarization may have been larger than 10 per cent.



قيم البحث

اقرأ أيضاً

214 - B. Gendre 2009
We present the observations of the afterglow of gamma-ray burst GRB 090102. Optical data taken by the TAROT, REM, GROND, together with publicly available data from Palomar, IAC and NOT telescopes, and X-ray data taken by the XRT instrument on board t he Swift spacecraft were used. This event features an unusual light curve. In X-rays, it presents a constant decrease with no hint of temporal break from 0.005 to 6 days after the burst. In the optical, the light curve presents a flattening after 1 ks. Before this break, the optical light curve is steeper than that of the X-ray. In the optical, no further break is observed up to 10 days after the burst. We failed to explain these observations in light of the standard fireball model. Several other models, including the cannonball model were investigated. The explanation of the broad band data by any model requires some fine tuning when taking into account both optical and X-ray bands.
Indications of a GeV component in the emission from GRBs are known since the EGRET observations during the 1990s and they have been confirmed by the data of the Fermi satellite. These results have, however, shown that our understanding of GRB physics is still unsatisfactory. The new generation of Cherenkov observatories and in particular the MAGIC telescope, allow for the first time the possibility to extend the measurement of GRBs from several tens up to hundreds of GeV energy range. Both leptonic and hadronic processes have been suggested to explain the possible GeV/TeV counterpart of GRBs. Observations with ground-based telescopes of very high energy photons (E>30 GeV) from these sources are going to play a key role in discriminating among the different proposed emission mechanisms, which are barely distinguishable at lower energies. MAGIC telescope observations of the GRB 090102 (z=1.547) field and Fermi Large Area Telescope (LAT) data in the same time interval are analysed to derive upper limits of the GeV/TeV emission. We compare these results to the expected emissions evaluated for different processes in the framework of a relativistic blast wave model for the afterglow. Simultaneous upper limits with Fermi and a Cherenkov telescope have been derived for this GRB observation. The results we obtained are compatible with the expected emission although the difficulties in predicting the HE and VHE emission for the afterglow of this event makes it difficult to draw firmer conclusions. Nonetheless, MAGIC sensitivity in the energy range of overlap with space-based instruments (above about 40 GeV) is about one order of magnitude better with respect to Fermi. This makes evident the constraining power of ground-based observations and shows that the MAGIC telescope has reached the required performance to make possible GRB multiwavelength studies in the very high energy range.
52 - S. Guiriec (1 , 2 , 3 2016
The origin of prompt emission from gamma ray bursts remains to be an open question. Correlated prompt optical and gamma-ray emission observed in a handful of GRBs strongly suggests a common emission region, but failure to adequately fit the broadband GRB spectrum prompted the hypothesis of different emission mechanisms for the low- and high-energy radiations. We demonstrate that our multi-component model for GRB gamma-ray prompt emission provides an excellent fit to GRB 110205A from optical to gamma-ray energies. Our results show that the optical and highest gamma-ray emissions have the same spatial and spectral origin, which is different from the bulk of the X- and softest gamma-ray radiation. Finally, our accurate redshift estimate for GRB 110205A demonstrates promise for using GRBs as cosmological standard candles.
161 - A. M. Beloborodov 2010
The curvature of a relativistic blast wave implies that its emission arrives to observers with a spread in time. This effect is believed to wash out fast variability in the lightcurves of GRB afterglows. We note that the spreading effect is reduced i f emission is anisotropic in the rest-frame of the blast wave (i.e. if emission is limb-brightened or limb-darkened). In particular, synchrotron emission is almost certainly anisotropic, and may be strongly anisotropic, depending on details of electron acceleration in the blast wave. Anisotropic afterglows can display fast and strong variability at high frequencies (above the fast-cooling frequency). This may explain the existence of bizarre features in the X-ray afterglows of GRBs, such as sudden drops and flares. We also note that a moderate anisotropy can significantly delay the jet break in the lightcurve, which makes it harder to detect.
On March 28, Swifts Burst Alert Telescope discovered a source in the constellation Draco when it erupted in a series of X-ray blasts. The explosion, catalogued as gamma-ray burst (GRB) 110328A, repeatedly flared in the following days, making the inte rpretation of the event as a GRB unlikely. Here we suggest that the event could be due to the tidal disruption of a star that approaches the pericentric distance of a black hole, and we use this fact to derive bounds on the physical characteristics of such system, based on the variability timescales and energetics of the observed X-ray emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا