ترغب بنشر مسار تعليمي؟ اضغط هنا

New constraints on GRB jet geometry and relativistic shock physics

103   0   0.0 ( 0 )
 نشر من قبل Cristiano Guidorzi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use high--quality, multi-band observations of Swift GRB120404A, from gamma-ray to radio frequencies, together with the new hydrodynamics code of van Eerten et al. (2012) to test the standard synchrotron shock model. The evolution of the radio and optical afterglow, with its prominent optical rebrightening at t_rest 260-2600 s, is remarkably well modelled by a decelerating jet viewed close to the jet edge, combined with some early re-energization of the shock. We thus constrain the geometry of the jet with half-opening and viewing angles of 23 and 21 deg respectively and suggest that wide jets viewed off-axis are more common in GRBs than previously thought. We also derive the fireball microphysics parameters epsilon_B=2.4e-4 and epsilon_e=9.3e-2 and a circumburst density of n=240 cm^-3. The ability to self-consistently model the microphysics parameters and jet geometry in this way offers an alternative to trying to identify elusive canonical jet breaks at late times. The mismatch between the observed and model-predicted X-ray fluxes is explained by the local rather than the global cooling approximation in the synchrotron radiation model, constraining the microphysics of particle acceleration taking place in a relativistic shock and, in turn, emphasising the need for a more realistic treatment of cooling in future developments of theoretical models. Finally, our interpretation of the optical peak as due to the passage of the forward shock synchrotron frequency highlights the importance of high quality multi-band data to prevent some optical peaks from being erroneously attributed to the onset of fireball deceleration.

قيم البحث

اقرأ أيضاً

88 - A. Vanthieghem 2020
Weakly magnetized, relativistic collisionless shock waves are not only the natural offsprings of relativistic jets in high-energy astrophysical sources, they are also associated with some of the most outstanding displays of energy dissipation through particle acceleration and radiation. Perhaps their most peculiar and exciting feature is that the magnetized turbulence that sustains the acceleration process, and (possibly) the secondary radiation itself, is self-excited by the accelerated particles themselves, so that the phenomenology of these shock waves hinges strongly on the microphysics of the shock. In this review, we draw a status report of this microphysics, benchmarking analytical arguments with particle-in-cell simulations, and extract consequences of direct interest to the phenomenology, regarding in particular the so-called microphysical parameters used in phenomenological studies.
We investigate the shape of the jet break in within-beam gamma-ray burst (GRB) optical afterglows for various lateral jet structure profiles. We consider cases with and without lateral spreading and a range of inclinations within the jet core half-op ening angle, $theta_c$. We fit model and observed afterglow lightcurves with a smoothly-broken power-law function with a free-parameter $kappa$ that describes the sharpness of the break. We find that the jet break is sharper ($kappa$ is greater) when lateral spreading is included than in the absence of lateral spreading. For profiles with a sharp-edged core, the sharpness parameter has a broad range of $0.1lesssimkappalesssim4.6$, whereas profiles with a smooth-edged core have a narrower range of $0.1lesssimkappalesssim2.2$ when models both with and without lateral spreading are included. For sharp-edged jets, the jet break sharpness depends strongly on the inclination of the system within $theta_c$, whereas for smooth-edged jets, $kappa$ is more strongly dependent on the size of $theta_c$. Using a sample of 20 GRBs we find nine candidate smooth-edged jet structures and eight candidate sharp-edged jet structures, while the remaining three are consistent with either. The shape of the jet break, as measured by the sharpness parameter $kappa$, can be used as an initial check for the presence of lateral structure in within-beam GRBs where the afterglow is well-sampled at and around the jet-break time.
63 - K. Misra , L. Resmi , D. A. Kann 2019
We present radio and optical afterglow observations of the TeV-bright long Gamma Ray Burst (GRB) 190114C at a redshift of $z=0.425$, which was detected by the MAGIC telescope. Our observations with ALMA, ATCA, and uGMRT were obtained by our low frequ ency observing campaign and range from $sim1$ to $sim140$ days after the burst and the optical observations were done with three optical telescopes spanning up to $sim25$ days after the burst. Long term radio/mm observations reveal the complex nature of the afterglow, which does not follow the spectral and temporal closure relations expected from the standard afterglow model. We find that the microphysical parameters of the external forward shock, representing the share of shock-created energy in the non-thermal electron population and magnetic field, are evolving with time. The inferred kinetic energy in the blast-wave depends strongly on the assumed ambient medium density profile, with a constant density medium demanding almost an order of magnitude higher energy than in the prompt emission, while a stellar wind-driven medium requires approximately the same amount energy as in prompt emission.
Relativistic supernovae constitute a sub-class of type Ic supernovae (SNe). Their non-thermal, radio emission differs notably from that of regular type Ic supernovae as they have a fast expansion speed (with velocities $sim$ 0.6-0.8 c) which can not be explained by a standard, spherical SN explosion but advocates for a quickly evolving, mildly relativistic ejecta associated with the SN. In this paper, we compute the synchrotron radiation emitted by the cocoon of a long gamma-ray burst jet (GRB). We show that the energy and velocity of the expanding cocoon, and the radio non-thermal light curves and spectra are consistent with those observed in relativistic SNe. Thus, the radio emission from this events is not coming from the SN shock front, but from the mildly relativistic cocoon produced by the passage of a GRB jet through the progenitor star. We also show that the cocoon radio emission dominates the GRB emission at early times for GRBs seen off-axis, and the flux can be larger at late times compared with on-axis GRBs if the cocoon energy is at least comparable with respect to the GRB energy.
We present a leptonic model on the external shock context to describe the high-energy emission of GRB 940217, GRB 941017 and GRB 970217A. We argue that the emission consists of two components, one with a similar duration of the burst, and a second, l onger-lasting GeV phase lasting hundred of seconds after the prompt phase. Both components can be described as synchrotron self-Compton emission from a reverse and forward shock respectively. For the reverse shock, we analyze the synchrotron self-Compton in the thick-shell case. The calculated fluxes and break energies are all consistent with the observed values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا