ترغب بنشر مسار تعليمي؟ اضغط هنا

We experimentally demonstrate over two orders of magnitude increase in the coherence time of nitrogen vacancy centres in diamond by implementing decoupling techniques. We show that equal pulse spacing decoupling performs just as well as non-periodic Uhrig decoupling and has the additional benefit that it allows us to take advantage of revivals in the echo (due to the coherent nature of the bath) to explore the longest coherence times. At short times, we can extend the coherence of particular quantum states out from T_2*=2.7 us out to an effective T_2 > 340 us. For preserving arbitrary states we show the experimental importance of using pulse sequences, that through judicious choice of the phase of the pulses, compensate the imperfections of individual pulses for all input states. At longer times we use these compensated sequences to enhance the echo revivals and show a coherence time of over 1.6 ms in ultra-pure natural abundance 13C diamond.
103 - C.A. Ryan , O. Moussa , J. Baugh 2008
We show experimental results demonstrating multiple rounds of heat-bath algorithmic cooling in a 3 qubit solid-state nuclear magnetic resonance quantum information processor. By dynamically pumping entropy out of the system of interest and into the h eat-bath, we are able show purification of a single qubit to a polarization 1.69 times that of the heat-bath and thus go beyond the Shannon bound for closed system cooling. The cooling algorithm implemented requires both high fidelity coherent control and a deliberate controlled interaction with the environment. We discuss the improvements in control that allowed this demonstration. This experimental work shows that given this level of quantum control in systems with sufficiently large polarizations, nearly pure qubits should be achievable.
In building a quantum information processor (QIP), the challenge is to coherently control a large quantum system well enough to perform an arbitrary quantum algorithm and to be able to correct errors induced by decoherence. Nuclear magnetic resonance (NMR) QIPs offer an excellent test-bed on which to develop and benchmark tools and techniques to control quantum systems. Two main issues to consider when designing control methods are accuracy and efficiency, for which two complementary approaches have been developed so far to control qubit registers with liquid-state NMR methods. The first applies optimal control theory to numerically optimize the control fields to implement unitary operations on low dimensional systems with high fidelity. The second technique is based on the efficient optimization of a sequence of imperfect control elements so that implementation of a full quantum algorithm is possible while minimizing error accumulation. This article summarizes our work in implementing both of these methods. Furthermore, we show that taken together, they form a basis to design quantum-control methods for a block-architecture QIP so that large system size is not a barrier to implementing optimal control techniques.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا