ترغب بنشر مسار تعليمي؟ اضغط هنا

Extending Quantum Coherence in Diamond

104   0   0.0 ( 0 )
 نشر من قبل Colm Ryan
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate over two orders of magnitude increase in the coherence time of nitrogen vacancy centres in diamond by implementing decoupling techniques. We show that equal pulse spacing decoupling performs just as well as non-periodic Uhrig decoupling and has the additional benefit that it allows us to take advantage of revivals in the echo (due to the coherent nature of the bath) to explore the longest coherence times. At short times, we can extend the coherence of particular quantum states out from T_2*=2.7 us out to an effective T_2 > 340 us. For preserving arbitrary states we show the experimental importance of using pulse sequences, that through judicious choice of the phase of the pulses, compensate the imperfections of individual pulses for all input states. At longer times we use these compensated sequences to enhance the echo revivals and show a coherence time of over 1.6 ms in ultra-pure natural abundance 13C diamond.

قيم البحث

اقرأ أيضاً

Spins of negatively charged nitrogen-vacancy (NV$^-$) defects in diamond are among the most promising candidates for solid-state qubits. The fabrication of quantum devices containing these spin-carrying defects requires position-controlled introducti on of NV$^-$ defects having excellent properties such as spectral stability, long spin coherence time, and stable negative charge state. Nitrogen ion implantation and annealing enable the positioning of NV$^-$ spin qubits with high precision, but to date, the coherence times of qubits produced this way are short, presumably because of the presence of residual radiation damage. In the present work, we demonstrate that a high temperature annealing at 1000$^circ$C allows 2 millisecond coherence times to be achieved at room temperature. These results were obtained for implantation-produced NV$^-$ defects in a high-purity, 99.99% $^{12}$C enriched single crystal chemical vapor deposited diamond. We discuss these remarkably long coherence times in the context of the thermal behavior of residual defect spins. [Published in Physical Review B {bf{88}}, 075206 (2013)]
Decoherence, resulting from unwanted interaction between a qubit and its environment, poses a serious challenge towards the development of quantum technologies. Recently, researchers have started analysing how real-time Hamiltonian learning approache s, based on estimating the qubit state faster than the environmental fluctuations, can be used to counteract decoherence. In this work, we investigate how the back-action of the quantum measurements used in the learning process can be harnessed to extend qubit coherence. We propose an adaptive protocol that, by learning the qubit environment, narrows down the distribution of possible environment states. While the outcomes of quantum measurements are random, we show that real-time adaptation of measurement settings (based on previous outcomes) allows a deterministic decrease of the width of the bath distribution, and hence an increase of the qubit coherence. We numerically simulate the performance of the protocol for the electronic spin of a nitrogen-vacancy centre in diamond subject to a dilute bath of $^{13}$C nuclear spin, finding a considerable improvement over the performance of non-adaptive strategies.
To implement reliable quantum information processing, quantum gates have to be protected together with the qubits from decoherence. Here we demonstrate experimentally on nitrogen-vacancy system that by using continuous wave dynamical decoupling metho d, not only the coherence time is prolonged by about 20 times, but also the quantum gates is protected for the duration of controlling time. This protocol shares the merits of retaining the superiority of prolonging the coherence time and at the same time easily combining with quantum logic tasks. It is expected to be useful in task where duration of quantum controlling exceeds far beyond the dephasing time.
We investigated the depth dependence of coherence times of nitrogen-vacancy (NV) centers through precisely depth controlling by a moderately oxidative at 580{deg}C in air. By successive nanoscale etching, NV centers could be brought close to the diam ond surface step by step, which enable us to trace the evolution of the number of NV centers remained in the chip and to study the depth dependence of coherence times of NV centers with the diamond etching. Our results showed that the coherence times of NV centers declined rapidly with the depth reduction in their last about 22 nm before they finally disappeared, revealing a critical depth for the influence of rapid fluctuating surface spin bath. By monitoring the coherence time variation with depth, we could make a shallow NV center with long coherence time for detecting external spins with high sensitivity.
106 - A. Batalov , C. Zierl , T. Gaebel 2007
Photon interference among distant quantum emitters is a promising method to generate large scale quantum networks. Interference is best achieved when photons show long coherence times. For the nitrogen-vacancy defect center in diamond we measure the coherence times of photons via optically induced Rabi oscillations. Experiments reveal a close to Fourier transform (i.e. lifetime) limited width of photons emitted even when averaged over minutes. The projected contrast of two-photon interference (0.8) is high enough to envisage the applications in quantum information processing. We report 12 and 7.8 ns excited state lifetime depending on the spin state of the defect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا