ترغب بنشر مسار تعليمي؟ اضغط هنا

Liquid State NMR as a Test-bed for Developing Quantum Control Methods

169   0   0.0 ( 0 )
 نشر من قبل Colm Ryan
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In building a quantum information processor (QIP), the challenge is to coherently control a large quantum system well enough to perform an arbitrary quantum algorithm and to be able to correct errors induced by decoherence. Nuclear magnetic resonance (NMR) QIPs offer an excellent test-bed on which to develop and benchmark tools and techniques to control quantum systems. Two main issues to consider when designing control methods are accuracy and efficiency, for which two complementary approaches have been developed so far to control qubit registers with liquid-state NMR methods. The first applies optimal control theory to numerically optimize the control fields to implement unitary operations on low dimensional systems with high fidelity. The second technique is based on the efficient optimization of a sequence of imperfect control elements so that implementation of a full quantum algorithm is possible while minimizing error accumulation. This article summarizes our work in implementing both of these methods. Furthermore, we show that taken together, they form a basis to design quantum-control methods for a block-architecture QIP so that large system size is not a barrier to implementing optimal control techniques.

قيم البحث

اقرأ أيضاً

We demonstrate with an experiment how molecules are a natural test-bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting indivi dual molecules to be distinguished and probed. By considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states, we demonstrate that the quantum Jarzynski equality is satisfied in this set-up. This relates the heat dissipated into the environment to the free energy difference between the initial and final state. We demonstrate also how utilizing the quantum Jarzynski equality allows for the detection of energy shifts within a molecule, beyond the relative shift.
Being able to quantify the level of coherent control in a proposed device implementing a quantum information processor (QIP) is an important task for both comparing different devices and assessing a devices prospects with regards to achieving fault-t olerant quantum control. We implement in a liquid-state nuclear magnetic resonance QIP the randomized benchmarking protocol presented by Knill et al (PRA 77: 012307 (2008)). We report an error per randomized $frac{pi}{2}$ pulse of $1.3 pm 0.1 times 10^{-4}$ with a single qubit QIP and show an experimentally relevant error model where the randomized benchmarking gives a signature fidelity decay which is not possible to interpret as a single error per gate. We explore and experimentally investigate multi-qubit extensions of this protocol and report an average error rate for one and two qubit gates of $4.7 pm 0.3 times 10^{-3}$ for a three qubit QIP. We estimate that these error rates are still not decoherence limited and thus can be improved with modifications to the control hardware and software.
Recently developed quantum algorithms suggest that in principle, quantum computers can solve problems such as simulation of physical systems more efficiently than classical computers. Much remains to be done to implement these conceptual ideas into a ctual quantum computers. As a small-scale demonstration of their capability, we simulate a simple many-fermion problem, the Fano-Anderson model, using liquid state Nuclear Magnetic Resonance (NMR). We carefully designed our experiment so that the resource requirement would scale up polynomially with the size of the quantum system to be simulated. The experimental results allow us to assess the limits of the degree of quantum control attained in these kinds of experiments. The simulation of other physical systems, with different particle statistics, is also discussed.
Fifty years of developments in nuclear magnetic resonance (NMR) have resulted in an unrivaled degree of control of the dynamics of coupled two-level quantum systems. This coherent control of nuclear spin dynamics has recently been taken to a new leve l, motivated by the interest in quantum information processing. NMR has been the workhorse for the experimental implementation of quantum protocols, allowing exquisite control of systems up to seven qubits in size. Here, we survey and summarize a broad variety of pulse control and tomographic techniques which have been developed for and used in NMR quantum computation. Many of these will be useful in other quantum systems now being considered for implementation of quantum information processing tasks.
We introduce a method that can orthogonalize any pure continuous variable quantum state, i.e. generate a state $|psi_perp>$ from $|psi>$ where $<psi|psi_perp> = 0$, which does not require significant a priori knowledge of the input state. We illustra te how to achieve orthogonalization using the Jaynes-Cummings or beam-splitter interaction, which permits realization in a number of systems. Furthermore, we demonstrate how to orthogonalize the motional state of a mechanical oscillator in a cavity optomechanics context by developing a set of coherent phonon level operations. As the mechanical oscillator is a stationary system such operations can be performed at multiple times, providing considerable versatility for quantum state engineering applications. Utilizing this, we additionally introduce a method how to transform any known pure state into any desired target state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا