ترغب بنشر مسار تعليمي؟ اضغط هنا

Over the past few years considerable progress has been made on the resummation of double-logarithmically enhanced threshold (large-x) and high-energy (small-x) higher-order contributions to the splitting functions for parton and fragmentation distrib utions and to the coefficient functions for inclusive deep-inelastic scattering and semi-inclusive e^+e^- annihilation. We present an overview of the methods which allow, in many cases, to derive the coefficients of the highest three logarithms at all orders in the strong coupling from next-to-next-to-leading order results in massless perturbative QCD. Some representative analytical and numerical results are shown, and the present limitations of these resummations are discussed.
60 - C.-H. Kom , A. Vogt 2012
We study the splitting functions for the evolution of fragmentation distributions and the coefficient functions for single-hadron production in semi-inclusive electron-positron annihilation in massless perturbative QCD for small values of the momentu m fraction and scaling variable x, where their fixed-order approximations are completely destabilized by huge double logarithms of the form alpha_s^n 1/x ln^(2n-a) x. Complete analytic all-order expressions in Mellin-N space are presented for the resummation of these terms at the next-to-next-to-leading logarithmic accuracy. The poles for the first moments, related to the evolution of hadron multiplicities, and the small-x instabilities of the next-to-leading order splitting and coefficient functions are removed by this resummation, which leads to an oscillatory small-x behaviour and functions that can be used at N=1 and down to extremely small values of x. First steps are presented towards extending these results to the higher accuracy required for an all-x combination with the state-of-the-art next-to-next-to-leading order large-x results.
Motivated by evidence for the existence of dark matter, many new physics models predict the pair production of new particles, followed by the decays into two invisible particles, leading to a momentum imbalance in the visible system. For the cases wh ere all four components of the vector sum of the two `missing momenta are measured from the momentum imbalance, we present analytic solutions of the final state system in terms of measureable momenta, with the mass shell constraints taken into account. We then introduce new variables which allow the masses involved in the new physics process, including that of the dark matter particles, to be extracted. These are compared with a selection of variables in the literature, and possible applications at lepton and hadron colliders are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا