ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel technique for measuring masses of a pair of semi-invisibly decaying particles

72   0   0.0 ( 0 )
 نشر من قبل Lucian Harland-Lang
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by evidence for the existence of dark matter, many new physics models predict the pair production of new particles, followed by the decays into two invisible particles, leading to a momentum imbalance in the visible system. For the cases where all four components of the vector sum of the two `missing momenta are measured from the momentum imbalance, we present analytic solutions of the final state system in terms of measureable momenta, with the mass shell constraints taken into account. We then introduce new variables which allow the masses involved in the new physics process, including that of the dark matter particles, to be extracted. These are compared with a selection of variables in the literature, and possible applications at lepton and hadron colliders are discussed.

قيم البحث

اقرأ أيضاً

Dark photons are hypothetical massive vector particles that could mix with ordinary photons. The simplest theoretical model is fully characterised by only two parameters: the mass of the dark photon m$_{gamma^{mathrm{D}}}$ and its mixing parameter wi th the photon, $varepsilon$. The sensitivity of the SHiP detector is reviewed for dark photons in the mass range between 0.002 and 10 GeV. Different production mechanisms are simulated, with the dark photons decaying to pairs of visible fermions, including both leptons and quarks. Exclusion contours are presented and compared with those of past experiments. The SHiP detector is expected to have a unique sensitivity for m$_{gamma^{mathrm{D}}}$ ranging between 0.8 and 3.3$^{+0.2}_{-0.5}$ GeV, and $varepsilon^2$ ranging between $10^{-11}$ and $10^{-17}$.
A new imaging technique for $alpha$-particles using a fast optical camera focused on a thin scintillator is presented. As $alpha$-particles interact in a thin layer of LYSO fast scintillator, they produce a localized flash of light. The light is coll ected with a lens to an intensified optical camera, Tpx3Cam, with single photon sensitivity and excellent spatial & temporal resolutions. The interactions of photons with the camera is reconstructed by means of a custom algorithm, capable of discriminating single photons using time and spatial information.
The gravitational force on antimatter has never been directly measured. A method is suggested for measuring the acceleration of antimatter $(bar g)$ by measuring the deflection of a beam of neutral antihydrogen atoms in the Earths gravitational field . While a simple position measurement of the beam could be used, a more efficient measurement can be made using a transmission interferometer. A 1% measurement of $bar g$ should be possible from a beam of about 100,000 atoms, with the ultimate accuracy being determined largely by the number of antihydrogen atoms that can be produced. A method is suggested for producing an antihydrogen beam appropriate for this experiment.
In this paper, we point out a novel signature of physics beyond the Standard Model which could potentially be observed both at the Large Hadron Collider (LHC) and at future colliders. This signature, which emerges naturally within many proposed exten sions of the Standard Model, results from the multiple displaced vertices associated with the successive decays of unstable, long-lived particles along the same decay chain. We call such a sequence of displaced vertices a tumbler. We examine the prospects for observing tumblers at the LHC and assess the extent to which tumbler signatures can be distinguished from other signatures of new physics which also involve multiple displaced vertices within the same collider event. As part of this analysis, we also develop a procedure for reconstructing the masses and lifetimes of the particles involved in the corresponding decay chains. We find that the prospects for discovering and distinguishing tumblers can be greatly enhanced by exploiting precision timing information such as would be provided by the CMS timing layer at the high-luminosity LHC. Our analysis therefore provides strong additional motivation for continued efforts to improve the timing capabilities of collider detectors at the LHC and beyond.
36 - Pavel Ivanov 2012
(abbreviated) In this note we consider, in a weak-field limit, a relativistic linear motion of two particles with opposite signs of masses having a small difference between their absolute values $m_{1,2}=pm (mupm Delta mu) $, $mu > 0$, $|Delta mu | l l mu$ and a small difference between their velocities. Assuming that the weak-field limit holds and the dynamical system is conservative an elementary treatment of the problem based on the laws of energy and momentum conservation shows that the system can be accelerated indefinitely, or attain very large asymptotic values of the Lorentz factor $gamma$. The system experiences indefinite acceleration when its energy-momentum vector is null and the mass difference $Delta mu le 0$. When modulus of the square of the norm of the energy-momentum vector, $|N^2|$, is sufficiently small the system can be accelerated to very large $gamma propto |N^2|^{-1}$. It is stressed that when only leading terms in the ratio of a characteristic gravitational radius to the distance between the particles are retained our elementary analysis leads to equations of motion equivalent to those derived from relativistic weak-field equations of motion of Havas and Goldberg 1962. Thus, in the weak-field approximation, it is possible to bring the system to the state with extremely high values of $gamma$. The positive energy carried by the particle with positive mass may be conveyed to other physical bodies say, by intercepting this particle with a target. Suppose that there is a process of production of such pairs and the particles with positive mass are intercepted while the negative mass particles are expelled from the region of space occupied by physical bodies of interest. This scheme could provide a persistent transfer of positive energy to the bodies, which may be classified as a Perpetuum Motion of Third Kind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا