ترغب بنشر مسار تعليمي؟ اضغط هنا

The dispersion relation of de Sitter special relativity is obtained in a simple and compact form, which is formally similar to the dispersion relation of ordinary special relativity. It is manifestly invariant under change of scale of mass, energy an d momentum, and can thus be applied at any energy scale. When applied to the universe as a whole, the de Sitter special relativity is found to provide a natural scenario for the existence of an evolving cosmological term, and agrees in particular with the present-day observed value. It is furthermore consistent with a conformal cyclic view of the universe, in which the transition between two consecutive eras occurs through a conformal invariant spacetime.
In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincare special relativity is no longer valid and must be replaced by a de Si tter special relativity. By considering the kinematics of a spinless particle in a de Sitter spacetime, we study the geodesics of this spacetime, the ensuing definitions of canonical momenta, and explore possible implications for quantum mechanics.
The properties of Lorentz transformations in de Sitter relativity are studied. It is shown that, in addition to leaving invariant the velocity of light, they also leave invariant the length-scale related to the curvature of the de Sitter spacetime. T he basic conclusion is that it is possible to have an invariant length parameter without breaking the Lorentz symmetry. This result may have important implications for the study of quantum kinematics, and in particular for quantum gravity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا