ترغب بنشر مسار تعليمي؟ اضغط هنا

118 - R.A. Osten , C. Melis , B. Stelzer 2015
We report upper limits to the radio and X-ray emission from the newly discovered ultracool dwarf binary WISE J104915.57$-$531906.1 (Luhman 16AB). As the nearest ultracool dwarf binary (2 pc), its proximity offers a hefty advantage to studying plasma processes in ultracool dwarfs which are more similar in gross properties (radius, mass, temperature) to the solar system giant planets than stars. The radio and X-ray emission upper limits from the Australia Telescope Compact Array (ATCA) and Chandra observations, each spanning multiple rotation periods, provide the deepest fractional radio and X-ray luminosities to date on an ultracool dwarf, with $log{(L_{rm r, u}/L_{rm bol}) [Hz^{-1}]} < -18.1$ (5.5 GHz), $log{(L_{rm r, u}/L_{rm bol}) [Hz^{-1}]} < -17.9$ (9 GHz), and $log{(L_{rm x}/L_{rm bol})} < -5.7$. While the radio upper limits alone do not allow for a constraint on the magnetic field strength, we limit the size of any coherently emitting region in our line of sight to less than 0.2% of the radius of one of the brown dwarfs. Any source of incoherent emission must span less than about 20% of the brown dwarf radius, assuming magnetic field strengths of a few tens to a few hundred Gauss. The fast rotation and large amplitude photometric variability exhibited by the T dwarf in the Luhman 16AB system are not accompanied by enhanced nonthermal radio emission, nor enhanced heating to coronal temperatures, as observed on some higher mass ultracool dwarfs, confirming the expected decoupling of matter and magnetic field in cool neutral atmospheres.
We present mid-IR photometry and spectra of the merged binary V1309 Sco taken between 18 and 23 months after outburst. Strong mid-IR emission and a solid state absorption feature indicate the presence of a significant amount of dust in the circumstel lar environment. The absence of detectable mid-IR emission before the outburst suggests this dust was produced in the eruptive merger event. Model fits to the solid state absorption feature constrain the constituent species and column density of the dust around V1309 Sco. We find the absorption feature can be reproduced by large (3 micron) amorphous pyroxene grains at a temperature of 800 K. This grain size, if confirmed with longer wavelength spectroscopy and modelling, would be suggestive of dust processing in the circumstellar environment. The data in hand do not allow us to discriminate between disk or shell configurations for the dusty material.
255 - C. Melis 2010
Spitzer IRS spectroscopy supports the interpretation that BP Piscium, a gas and dust enshrouded star residing at high Galactic latitude, is a first-ascent giant rather than a classical T Tauri star. Our analysis suggests that BP Pisciums spectral ene rgy distribution can be modeled as a disk with a gap that is opened by a giant planet. Modeling the rich mid-infrared emission line spectrum indicates that the solid-state emitting grains orbiting BP Piscium are primarily composed of ~75 K crystalline, magnesium-rich olivine; ~75 K crystalline, magnesium-rich pyroxene; ~200 K amorphous, magnesium-rich pyroxene; and ~200 K annealed silica (cristobalite). These dust grains are all sub-micron sized. The giant planet and gap model also naturally explains the location and mineralogy of the small dust grains in the disk. Disk shocks that result from disk-planet interaction generate the highly crystalline dust which is subsequently blown out of the disk mid-plane and into the disk atmosphere.
120 - C. Melis 2010
We have performed a comprehensive ground-based observational program aimed at characterizing the circumstellar material orbiting three single white dwarf stars previously known to possess gaseous disks. Near-infrared imaging unambiguously detects exc ess infrared emission towards Ton 345 and allows us to refine models for the circumstellar dust around all three white dwarf stars. We find that each white dwarf hosts gaseous and dusty disks that are roughly spatially coincident, a result that is consistent with a scenario in which dusty and gaseous material has its origin in remnant parent bodies of the white dwarfs planetary systems. We briefly describe a new model for the gas disk heating mechanism in which the gaseous material behaves like a Z II region. In this Z II region, gas primarily composed of metals is photoionized by ultraviolet light and cools through optically thick allowed Ca II-line emission.
106 - C. Melis 2010
From optical spectroscopic measurements we determine that the HD 15407 binary system is ~80 Myr old. The primary, HD 15407A (spectral type F5V), exhibits strong mid-infrared excess emission indicative of a recent catastrophic collision between rocky planetary embryos or planets in its inner planetary system. Synthesis of all known stars with large quantities of dust in their terrestrial planet zone indicates that for stars of roughly Solar mass this warm dust phenomenon occurs at ages between 30 and 100 Myr. In contrast, for stars of a few Solar masses, the dominant era of the final assembling of rocky planets occurs earlier, between 10 and 30 Myr age. The incidence of the warm dust phenomenon, when compared against models for the formation of rocky terrestrial-like bodies, implies that rocky planet formation in the terrestrial planet zone around Sun-like stars is common.
67 - C. Melis 2009
We report identification of the first unambiguous example of what appears to be a new class of first-ascent giant stars that are actively accreting gas and dust and that are surrounded by substantial dusty disks. These old stars, who are nearing the end of their lives, are experiencing a rebirth into characteristics typically associated with newborn stars. The F2-type first-ascent giant star TYC 4144 329 2 is in a wide separation binary system with an otherwise normal G8 IV star, TYC 4144 329 1. From Keck near-infrared imaging and high-resolution spectroscopy we are able to determine that these two stars are $sim$1 Gyr old and reside at a distance of $sim$550 pc. One possible explanation for the origin of the accreting material is common-envelope interaction with a low-mass stellar or sub-stellar companion. The gaseous and dusty material around TYC 4144 329 2, as it is similar to the primordial disks observed around young classical T Tauri stars, could potentially give rise to a new generation of planets and/or planetesimals.
We have carried out a multiwavelength observational campaign demonstrating some of the remarkable properties of the infrared-bright variable star BP Psc. Surrounded by a compact dusty, gaseous disk, this little-studied late-G (or early-K) type star e mits about 75% of its detected energy flux at infrared wavelengths. Evidence for accretion of gas in conjunction with narrow bi-polar jets and Herbig-Haro objects is apparently consistent with classification of BP Psc as a pre-main sequence star, as postulated in most previous studies. If young, then BP Psc would be one of the nearest and oldest known classical T Tauri stars. However, such an evolutionary classification encounters various problems that are absent or much less severe if BP Psc is instead a luminosity class III post-main sequence star. In this case, it would be the first known example of a first ascent giant surrounded by a massive molecular disk with accompanying rapid gas accretion and prominent jets and HH objects. In this model, the genesis of the massive dusty gaseous disk could be a consequence of the envelopment of a low mass companion star. Properties in the disk may be conducive to the current formation of planets, a gigayear or more after the formation of BP Psc itself.
105 - B. Zuckerman 2007
We report the relative abundances of 17 elements in the atmosphere of the white dwarf star GD 362, material that, very probably, was contained previously in a large asteroid or asteroids with composition similar to the Earth/Moon system. The asteroid may have once been part of a larger parent body not unlike one of the terrestrial planets of our solar system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا