ﻻ يوجد ملخص باللغة العربية
We report the relative abundances of 17 elements in the atmosphere of the white dwarf star GD 362, material that, very probably, was contained previously in a large asteroid or asteroids with composition similar to the Earth/Moon system. The asteroid may have once been part of a larger parent body not unlike one of the terrestrial planets of our solar system.
The Kuiper Belt of our solar system is a source of short-period comets that may have delivered water and other volatiles to Earth and the other terrestrial planets. However, the distribution of water and other volatiles in extrasolar planetary system
The existence of water in extrasolar planetary systems is of great interest as it constrains the potential for habitable planets and life. Here, we report the identification of a circumstellar disk that resulted from the destruction of a water-rich a
The inner regions of protoplanetary discs (from $sim$ 0.1 to 10 au) are the expected birthplace of planets, especially telluric. In those high temperature regions, solids can experience cyclical annealing, vaporisation and recondensation. Hot and war
Chemical abundance studies of the Sun and solar twins have demonstrated that the solar composition of refractory elements is depleted when compared to volatile elements, which could be due to the formation of terrestrial planets. In order to further
An important goal within the quest for detecting an Earth-like extrasolar planet, will be to identify atmospheric gaseous bio-signatures. Observations of the light transmitted through the Earths atmosphere, as for an extrasolar planet, will be the fi