ﻻ يوجد ملخص باللغة العربية
We report upper limits to the radio and X-ray emission from the newly discovered ultracool dwarf binary WISE J104915.57$-$531906.1 (Luhman 16AB). As the nearest ultracool dwarf binary (2 pc), its proximity offers a hefty advantage to studying plasma processes in ultracool dwarfs which are more similar in gross properties (radius, mass, temperature) to the solar system giant planets than stars. The radio and X-ray emission upper limits from the Australia Telescope Compact Array (ATCA) and Chandra observations, each spanning multiple rotation periods, provide the deepest fractional radio and X-ray luminosities to date on an ultracool dwarf, with $log{(L_{rm r, u}/L_{rm bol}) [Hz^{-1}]} < -18.1$ (5.5 GHz), $log{(L_{rm r, u}/L_{rm bol}) [Hz^{-1}]} < -17.9$ (9 GHz), and $log{(L_{rm x}/L_{rm bol})} < -5.7$. While the radio upper limits alone do not allow for a constraint on the magnetic field strength, we limit the size of any coherently emitting region in our line of sight to less than 0.2% of the radius of one of the brown dwarfs. Any source of incoherent emission must span less than about 20% of the brown dwarf radius, assuming magnetic field strengths of a few tens to a few hundred Gauss. The fast rotation and large amplitude photometric variability exhibited by the T dwarf in the Luhman 16AB system are not accompanied by enhanced nonthermal radio emission, nor enhanced heating to coronal temperatures, as observed on some higher mass ultracool dwarfs, confirming the expected decoupling of matter and magnetic field in cool neutral atmospheres.
I report some observations and calculations related to the new nearby brown dwarf at d = 2 pc discovered by Luhman (2013, ApJ Letters, in press; arXiv:1303.2401). I report archival astrometry and photometry of the new object from IRAS (epoch 1983.5;
[Abridged] As part of our on-going investigation into the magnetic field properties of ultracool dwarfs, we present simultaneous radio, X-ray, and H-alpha observations of three M9.5-L2.5 dwarfs (BRI0021-0214, LSR060230.4+391059, and 2MASSJ052338.2-14
We present two epochs of MPG/ESO 2.2m GROND simultaneous 6-band ($rizJHK$) photometric monitoring of the closest known L/T transition brown dwarf binary WISE J104915.57-531906.1AB. We report here the first resolved variability monitoring of both the
[Abridged] We present a new radio survey of about 100 late-M and L dwarfs undertaken with the VLA. The sample was chosen to explore the role of rotation in the radio activity of ultracool dwarfs. Combining the new sample with results from our previou
WISE J104915.57$-$531906.1 is a L/T brown dwarf binary located 2pc from the Sun. The pair contains the closest known brown dwarfs and is the third closest known system, stellar or sub-stellar. We report comprehensive follow-up observations of this ne