ترغب بنشر مسار تعليمي؟ اضغط هنا

We have carried out a systematic study on the effect of Cu doping on nuclear, magnetic, and dielectric properties in Mn$_{1-x}$Cu$_{x}$WO$_4$ for ${0}leq{x}leq{0.19}$ by a synergic use of different techniques, viz, heat capacity, magnetization, diele ctric, and neutron powder diffraction measurements. Via heat capacity and magnetization measurements we show that with increasing Cu concentration magnetic frustration decreases, which leads to the stabilization of commensurate magnetic ordering. This was further verified by temperature-dependent unit cell volume changes derived from neutron diffraction measurements which was modeled by the Gr{u}neisen approximation. Dielectric measurements show a low temperature phase transition below about 9-10 K. Further more, magnetic refinements reveal no changes below this transition indicating a possible spin-flop transition which is unique to the Cu doped system. From these combined studies we have constructed a magnetoelectric phase diagram of this compound.
The recent surge of interest in phase change materials GeTe, Ge$_2$Sb$_2$Te$_5$, and related compounds motivated us to revisit the structural phase transition in GeTe in more details than was done before. Rhombohedral-to-cubic ferroelectric phase tra nsition in GeTe has been studied by high resolution neutron powder diffraction on a spallation neutron source. We determined the temperature dependence of the structural parameters in a wide temperature range extending from 309 to 973 K. Results of our studies clearly show an anomalous volume contraction of 0.6% at the phase transition from the rhombohedral to cubic phase. In order to better understand the phase transition and the associated anomalous volume decrease in GeTe we have performed phonon calculations based on the density functional theory. Results of the present investigations are also discussed with respect to the experimental data obtained for single crystals of GeTe.
We report the observation of spin glass state in the double perovskite oxide Sr$_{2}$FeCoO$_{6}$ prepared through sol-gel technique. Initial structural studies using x rays reveal that the compound crystallizes in tetragonal $I 4/m$ structure with la ttice parameters, $a$ = 5.4609(2) AA and $c$ = 7.7113(7) AA. The temperature dependent powder x ray studies reveal no structural phase transition in the temperature range 10 -- 300 K. However, the unit cell volume shows an anomaly coinciding with the magnetic transition temperature thereby suggesting a close connection between lattice and magnetism. Neutron diffraction studies and subsequent bond valence sums analysis show that in Sr$_{2}$FeCoO$_{6}$, the $B$ site is randomly occupied by Fe and Co in the mixed valence states of Fe$^{3+}$/Fe$^{4+}$ and Co$^{3+}$/Co$^{4+}$. The random occupancy and mixed valence sets the stage for inhomogeneous magnetic exchange interactions and in turn, for the spin glass like state in this double perovskite which is observed as an irreversibility in temperature dependent dc magnetization at $T_fsim$ 75 K. Thermal hysteresis observed in the magnetization profile of Sr$_{2}$FeCoO$_{6}$ is indicative of the mixed magnetic phases present. The dynamic magnetic susceptibility displays characteristic frequency dependence and confirms the spin glass nature of this material. Dynamical scaling analysis of $chi(T)$ yields a critical temperature $T_{ct}$ = 75.14(8) K and an exponent $z u$ = 6.2(2) typical for spin glasses. The signature of presence of mixed magnetic interactions is obtained from the thermal hysteresis in magnetization of Sr$_{2}$FeCoO$_{6}$. Combining the neutron and magnetization results of Sr$_2$FeCoO$_6$, we deduce the spin states of Fe to be in low spin while that of Co to be in low spin and intermediate spin.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا