ﻻ يوجد ملخص باللغة العربية
The recent surge of interest in phase change materials GeTe, Ge$_2$Sb$_2$Te$_5$, and related compounds motivated us to revisit the structural phase transition in GeTe in more details than was done before. Rhombohedral-to-cubic ferroelectric phase transition in GeTe has been studied by high resolution neutron powder diffraction on a spallation neutron source. We determined the temperature dependence of the structural parameters in a wide temperature range extending from 309 to 973 K. Results of our studies clearly show an anomalous volume contraction of 0.6% at the phase transition from the rhombohedral to cubic phase. In order to better understand the phase transition and the associated anomalous volume decrease in GeTe we have performed phonon calculations based on the density functional theory. Results of the present investigations are also discussed with respect to the experimental data obtained for single crystals of GeTe.
We systematically investigate the influence of high pressure on the electronic transport properties of layered ferromagnetic materials, in particular, those of Fe$_3$GeTe$_2$. Its crystal sustains a hexagonal phase under high pressures up to 25.9 GPa
We report a new tetragonal ground-state for perovskite-structured PbCrO3 from DFT+U calculations, and explain its anomalously large volume. The new structure is stabilized due to orbital ordering of Cr-d in the presence of a large tetragonal crystal
The topological properties and intrinsic anomalous Hall effect of CsCl-type ferromagnets GdZn and GdCd have been studied based on first-principles electronic structure calculations. According to the calculated band structures, both GdZn and GdCd host
The modulation of the electronic structure by an external magnetic field, which could further control the electronic transport behaviour of a system, is highly desired. Herein, an unconventional anomalous Hall effect (UAHE) was observed during magnet
The topological materials have attracted much attention recently. While three-dimensional topological insulators are becoming abundant, two-dimensional topological insulators remain rare, particularly in natural materials. ZrTe5 has host a long-stand