ترغب بنشر مسار تعليمي؟ اضغط هنا

The Square Kilometre Array will be a revolutionary instrument for the study of gas in the distant Universe. SKA1 will have sufficient sensitivity to detect and image atomic 21 cm HI in individual galaxies at significant cosmological distances, comple menting ongoing ALMA imaging of redshifted high-J CO line emission and far-infrared interstellar medium lines such as [CII] 157.7 um. At frequencies below ~50 GHz, observations of redshifted emission from low-J transitions of CO, HCN, HCO+, HNC, H2O and CS provide insight into the kinematics and mass budget of the cold, dense star-forming gas in galaxies. In advance of ALMA band 1 deployment (35 to 52 GHz), the most sensitive facility for high-redshift studies of molecular gas operating below 50~GHz is the Karl G. Jansky Very Large Array (VLA). Here, we present an overview of the role that the SKA could play in molecular emission line studies during SKA1 and SKA2, with an emphasis on studies of the dense gas tracers directly probing regions of active star-formation.
The broad spectral bandwidth at mm and cm-wavelengths provided by the recent upgrades to the Karl G. Jansky Very Large Array (VLA) has made it possible to conduct unbiased searches for molecular CO line emission at redshifts, z > 1.31. We present the discovery of a gas-rich, star-forming galaxy at z = 2.48, through the detection of CO(1-0) line emission in the COLDz survey, through a sensitive, Ka-band (31 to 39 GHz) VLA survey of a 6.5 square arcminute region of the COSMOS field. We argue that the broad line (FWHM ~570 +/- 80 km/s) is most likely to be CO(1-0) at z=2.48, as the integrated emission is spatially coincident with an infrared-detected galaxy with a photometric redshift estimate of z = 3.2 +/- 0.4. The CO(1-0) line luminosity is L_CO = (2.2 +/- 0.3) x 10^{10} K km/s pc^2, suggesting a cold molecular gas mass of M_gas ~ (2 - 8)x10^{10}M_solar depending on the assumed value of the molecular gas mass to CO luminosity ratio alpha_CO. The estimated infrared luminosity from the (rest-frame) far-infrared spectral energy distribution (SED) is L_IR = 2.5x10^{12} L_solar and the star-formation rate is ~250 M_solar/yr, with the SED shape indicating substantial dust obscuration of the stellar light. The infrared to CO line luminosity ratio is ~114+/-19 L_solar/(K km/s pc^2), similar to galaxies with similar SFRs selected at UV/optical to radio wavelengths. This discovery confirms the potential for molecular emission line surveys as a route to study populations of gas-rich galaxies in the future.
We present 1-2 GHz Very Large Array A-configuration continuum observations on the highest redshift quasar known to date, the $z=7.085$ quasar ULAS J112001.48+064124.3. The results show no radio continuum emission at the optical position of the quasar or its vicinity at a level of $geq 3sigma$ or $23.1 mu$Jy beam$^{-1}$. This $3sigma$ limit corresponds to a rest frame 1.4 GHz luminosity density limit of $L_{ u,1.4,GHz} < 1.76 times 10^{24}$ W Hz$^{-1}$ for a spectral index of $alpha=0$, and $L_{ u,1.4,GHz} < 1.42 times 10^{25}$ W Hz$^{-1}$ for a spectral index of $alpha=-1$. The rest-frame 1.4 GHz luminosity limits are $L_{rad} < 6.43 times 10^6 L_{odot}$ and $L_{rm rad} < 5.20 times 10^7 L_{odot}$ for $alpha=0$ and $alpha=-1$, respectively. The derived limits for the ratio of the rest frame 1.4 GHz luminosity density to the $B$-band optical luminosity density are $Rrlap{}_{1.4}^{*} < 0.53$ and $< 4.30$ for the above noted spectral indices, respectively. Given our upper limits on the radio continuum emission and the radio-to-optical luminosity ratio, we conclude that this quasar is radio-quiet and located at the low end of the radio quiet distribution of high redshift ($z gtrsim 6$) quasars.
We present a study of the formation of clustered, massive galaxies at large look-back times via spectroscopic imaging of CO in the unique GN20 proto-cluster at z = 4.05. Existing observations show that this is a dense concentration of gas-rich, very active star forming galaxies, including multiple bright submillimeter galaxies (SMGs). Using deep, high-resolution VLA CO(2-1) observations, we image the molecular gas with a resolution of ~1 kpc just 1.6 Gyr after the Big Bang. The SMGs GN20.2a and GN20.2b have deconvolved sizes of ~5 kpc X 3 kpc and ~8 kpc X 5 kpc (Gaussian FWHM) in CO(2-1), respectively, and we measure gas surface densities up to ~12,700/1,700X(sin i) (alpha_CO/0.8) M_sun/pc^2 for GN20.2a/GN20.2b in the highest-resolution maps. Dynamical mass estimates allow us to constrain the CO-to-H_2 conversion factor to alpha_CO = 1.7+/-0.8 M_sun (K km s^{-1} pc^2)^-1 for GN20.2a and alpha_CO = 1.1+/-^{1.5}_{1.1} M_sun (K km/s pc^2)^-1 for GN20.2b. We measure significant offsets (0.5-1) between the CO and optical emission, indicating either dust obscuration on scales of tens of kpc or that the emission originates from distinct galaxies. CO spectral line energy distributions imply physical conditions comparable to other SMGs and reveal further evidence that GN20.2a and GN20.2b are in different merging stages. We carry out a targeted search for CO emission from the 14 known B-band Lyman break galaxies (LBGs) in the field, tentatively detecting CO in a previously-undetected LBG and placing 3sigma upper limits on the CO luminosities of those that may lie within our bandpass. A blind search for emission line sources down to a 5sigma limiting CO luminosity of L_CO(2-1) = 8 X 10^9 K km/s pc^2 and covering Delta z = 0.0273 (~20 comoving Mpc) produces no other strong contenders associated with the proto-cluster.
424 - R. Wang , C. L. Carilli , J. Wagg 2008
We report new continuum observations of fourteen z~6 quasars at 250 GHz and fourteen quasars at 1.4 GHz. We summarize all recent millimeter and radio observations of the sample of the thirty-three quasars known with 5.71<=z<=6.43, and present a study of the rest frame far-infrared (FIR) properties of this sample. These quasars were observed with the Max Plank Millimeter Bolometer Array (MAMBO) at 250 GHz with mJy sensitivity, and 30% of them were detected. We also recover the average 250 GHz flux density of the MAMBO undetected sources at 4 sigma, by stacking the on-source measurements. The derived mean radio-to-UV spectral energy distributions (SEDs) of the full sample and the 250 GHz non-detections show no significant difference from that of lower-redshift optical quasars. Obvious FIR excesses are seen in the individual SEDs of the strong 250 GHz detections, with FIR-to-radio emission ratios consistent with that of typical star forming galaxies. Most 250 GHz-detected sources follow the L_{FIR}--L_{bol} relationship derived from a sample of local IR luminous quasars (L_{IR}>10^{12}L_{odot}), while the average L_{FIR}/L_{bol} ratio of the non-detections is consistent with that of the optically-selected PG quasars. The MAMBO detections also tend to have weaker Lyalpha emission than the non-detected sources. We discuss possible FIR dust heating sources, and critically assess the possibility of active star formation in the host galaxies of the z~6 quasars. The average star formation rate of the MAMBO non-detections is likely to be less than a few hundred M_{odot} yr^{-1}, but in the strong detections, the host galaxy star formation is probably at a rate of gtrsim10^{3} M_{odot} yr^{-1}, which dominates the FIR dust heating.
We report the spectroscopic confirmation of a sub-mm galaxy (SMG) at z=4.547 with an estimated L_IR=0.5-2.0x10^13 L_sun. The spectra, mid-IR, and X-ray properties indicate the bolometric luminosity is dominated by star formation at a rate of >1000M_s un per yr. Multiple, spatially separated components are visible in the Ly-Alpha line with an observed velocity difference of up to 380 km/sec and the object morphology indicates a merger. The best fit spectral energy distribution and spectral line indicators suggest the object is 2-8 Myr old and contains >10^10 M_sun of stellar mass. This object is a likely progenitor for the massive early type systems seen at z~2.
We present 8.4 GHz VLA A-array and 1.4 GHz VLBA results on the radio continuum emission from the highest redshift radio-loud quasar known to date, the $z=6.12$ QSO J1427+3312. The VLA observations show an unresolved steep spectrum source with a flux density of $250 pm 20$ uJy at 8.4GHz and a spectral index value of $alpha^{8.4}_{1.4}=-1.1$. The 1.4 GHz VLBA images reveal several continuum components with a total flux density of $1.778 pm 0.109$ mJy, which is consistent with the flux density measured with the VLA at 1.4 GHz. Each of these components is resolved with sizes of a few milliarcseconds, and intrinsic brightness temperatures on the order of $10^7$ to $10^8$ K. The physical characteristics as revealed in these observations suggest that this QSO may be a Compact Symmetric Object, with the two dominant components seen with the VLBA, which are separated by 31 mas (174 pc) and have intrinsic sizes of ~22-34 pc, being the two radio lobes that are confined by the dense ISM. If indeed a CSO, then the estimated kinematic age of this radio AGN is only $10^3$ yr.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا