ترغب بنشر مسار تعليمي؟ اضغط هنا

VLA and VLBA Observations of the Highest Redshift Radio-Loud QSO J1427+3312 at z = 6.12

237   0   0.0 ( 0 )
 نشر من قبل Emmanuel Momjian
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 8.4 GHz VLA A-array and 1.4 GHz VLBA results on the radio continuum emission from the highest redshift radio-loud quasar known to date, the $z=6.12$ QSO J1427+3312. The VLA observations show an unresolved steep spectrum source with a flux density of $250 pm 20$ uJy at 8.4GHz and a spectral index value of $alpha^{8.4}_{1.4}=-1.1$. The 1.4 GHz VLBA images reveal several continuum components with a total flux density of $1.778 pm 0.109$ mJy, which is consistent with the flux density measured with the VLA at 1.4 GHz. Each of these components is resolved with sizes of a few milliarcseconds, and intrinsic brightness temperatures on the order of $10^7$ to $10^8$ K. The physical characteristics as revealed in these observations suggest that this QSO may be a Compact Symmetric Object, with the two dominant components seen with the VLBA, which are separated by 31 mas (174 pc) and have intrinsic sizes of ~22-34 pc, being the two radio lobes that are confined by the dense ISM. If indeed a CSO, then the estimated kinematic age of this radio AGN is only $10^3$ yr.



قيم البحث

اقرأ أيضاً

The existence of BAL outflows in only radio-quiet QSOs was thought to be an important clue to mass ejection and the radio-loud - radio-quiet dichotomy. Recently a few radio-loud BAL QSOs have been discovered at high redshift. We present evidence that PKS 1004+13 is a radio-loud BAL QSO. It would be the first known at low-redshift (z = 0.24), and one of the most radio luminous. For PKS 1004+13, there appear to be broad absorption troughs of O VI, N V, Si IV, and C IV, indicating high-ionization outflows up to about 10,000 km/s. There are also two strong, broad (~500 km/s), high-ionization, associated absorption systems that show partial covering of the continuum source. The strong UV absorption we have detected suggests that the extreme soft-X-ray weakness of PKS 1004+13 is primarily the result of absorption. The large radio-lobe dominance indicates BAL and associated gas at high inclinations to the central engine axis, perhaps in a line-of-sight that passes through an accretion disk wind.
We present 1-2 GHz Very Large Array A-configuration continuum observations on the highest redshift quasar known to date, the $z=7.085$ quasar ULAS J112001.48+064124.3. The results show no radio continuum emission at the optical position of the quasar or its vicinity at a level of $geq 3sigma$ or $23.1 mu$Jy beam$^{-1}$. This $3sigma$ limit corresponds to a rest frame 1.4 GHz luminosity density limit of $L_{ u,1.4,GHz} < 1.76 times 10^{24}$ W Hz$^{-1}$ for a spectral index of $alpha=0$, and $L_{ u,1.4,GHz} < 1.42 times 10^{25}$ W Hz$^{-1}$ for a spectral index of $alpha=-1$. The rest-frame 1.4 GHz luminosity limits are $L_{rad} < 6.43 times 10^6 L_{odot}$ and $L_{rm rad} < 5.20 times 10^7 L_{odot}$ for $alpha=0$ and $alpha=-1$, respectively. The derived limits for the ratio of the rest frame 1.4 GHz luminosity density to the $B$-band optical luminosity density are $Rrlap{}_{1.4}^{*} < 0.53$ and $< 4.30$ for the above noted spectral indices, respectively. Given our upper limits on the radio continuum emission and the radio-to-optical luminosity ratio, we conclude that this quasar is radio-quiet and located at the low end of the radio quiet distribution of high redshift ($z gtrsim 6$) quasars.
155 - R.M. Sambruna 2007
We report on Swift observations of four z>2 radio-loud quasars (0212+735, 0537-286, 0836+710, and 2149-307), classified as blazars. The sources, well-known emitters at soft-medium X-rays, were detected at >5sigma with the BAT experiment in 15-150 keV . No flux variability was detected within the XRT and BAT exposures, with the exception of 0836+710 which shows an increase of a factor 4 of the 15-150 keV flux on a timescale of one month. The 0.3-10 keV spectra are well fitted by power law models, with rather hard continua (photon indices Gamma_XRT ~1.3-1.5); similarly, the 15-150 keV spectra are described by power laws with Gamma_BAT ~1.3-1.8. The XRT data exhibit spectral curvature, which can be modeled either in terms of excess absorption along the line of sight, or a downward-curved broken power law. In the former case, if the excess N_H is at the rest-frame of the source, columns of N_H^z=(0.3-6)x10^22 cm^-2 are measured. Modeling of the SEDs of the four quasars shows that the emission at the higher frequencies, >~ 10^16 Hz, is dominated by the jet, while the steep optical-to-UV continua, observed with the UVOT, can be attributed to thermal emission from the accretion disk. The disk luminosity is between 1% and 10% the jet power, similar to other powerful blazars.
We carry out a series of deep Karl G. Jansky Very Large Array (VLA) S-band observations of a sample of 21 quasars at $zsim6$. The new observations expand the searches of radio continuum emission to the optically faint quasar population at the highest redshift with rest-frame $4400 rm AA$ luminosities down to $3 times10^{11} L_{odot}$. We report the detections of two new radio-loud quasars: CFHQS J2242+0334 (hereafter J2242+0334) at $z=5.88$ and CFHQS J0227$-$0605 (hereafter J0227$-$0605) at $z=6.20$, detected with 3 GHz flux densities of $87.0 pm 6.3 mu rm Jy$ and $55.4 pm 6.7 mu rm Jy$, respectively. Their radio replaced{loudness}{loudnesses} are estimated to be $54.9 pm 4.7$ and $16.5 pm 3.2$, respectively. To better constrain the radio-loud fraction (RLF), we combine the new measurements with the archival VLA L-band data as well as available data from the literature, considering the upper limits for non-detections and deleted{and} possible selection effects. The final derived RLF is $9.4 pm 5.7%$ for the optically selected quasars at $zsim6$. We also compare the RLF to that of the quasar samples at low redshift and check the RLF in different quasar luminosity bins. The RLF for the optically faint objects is still poorly constrained due to the limited sample size. Our replaced{result}{results} show no evidence of significant quasar RLF evolution with redshift. There is also no clear trend of RLF evolution with quasar UV/optical luminosity due to the limited sample size of optically faint objects with deep radio observations.
74 - Yali Shao , Jeff Wagg , Ran Wang 2020
We present Giant Metrewave Radio Telescope (GMRT) 323 MHz radio continuum observations toward 13 radio-loud quasars at $z>5$, sampling the low-frequency synchrotron emission from these objects. Among the 12 targets successfully observed, we detected 10 above $4sigma$ significance, while 2 remain undetected. All of the detected sources appear as point sources. Combined with previous radio continuum detections from the literature, 9 quasars have power-law spectral energy distributions throughout the radio range; for some the flux density drops with increasing frequency while it increases for others. Two of these sources appear to have spectral turnover. For the power-law-like sources, the power-law indices have a positive range between 0.18 and 0.67 and a negative values between $-0.90$ and $-0.27$. For the turnover sources, the radio peaks around $sim1$ and $sim10$ GHz in the rest frame, the optically thin indices are $-0.58$ and $-0.90$, and the optically thick indices are 0.50 and 1.20. A magnetic field and spectral age analysis of SDSS J114657.59+403708.6 at $z=5.01$ may indicate that the turnover is not caused by synchrotron self-absorption, but rather by free-free absorption by the high-density medium in the nuclear region. Alternatively, the apparent turnover may be an artifact of source variability. Finally, we calculated the radio loudness $R_{2500rm, AA}$ for our sample, which spans a very wide range from 12$^{+13}_{-13}$ to 4982$^{+279}_{-254}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا