ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution spectroscopic imaging of CO in a z=4.05 proto-cluster

118   0   0.0 ( 0 )
 نشر من قبل Jacqueline Hodge
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the formation of clustered, massive galaxies at large look-back times via spectroscopic imaging of CO in the unique GN20 proto-cluster at z = 4.05. Existing observations show that this is a dense concentration of gas-rich, very active star forming galaxies, including multiple bright submillimeter galaxies (SMGs). Using deep, high-resolution VLA CO(2-1) observations, we image the molecular gas with a resolution of ~1 kpc just 1.6 Gyr after the Big Bang. The SMGs GN20.2a and GN20.2b have deconvolved sizes of ~5 kpc X 3 kpc and ~8 kpc X 5 kpc (Gaussian FWHM) in CO(2-1), respectively, and we measure gas surface densities up to ~12,700/1,700X(sin i) (alpha_CO/0.8) M_sun/pc^2 for GN20.2a/GN20.2b in the highest-resolution maps. Dynamical mass estimates allow us to constrain the CO-to-H_2 conversion factor to alpha_CO = 1.7+/-0.8 M_sun (K km s^{-1} pc^2)^-1 for GN20.2a and alpha_CO = 1.1+/-^{1.5}_{1.1} M_sun (K km/s pc^2)^-1 for GN20.2b. We measure significant offsets (0.5-1) between the CO and optical emission, indicating either dust obscuration on scales of tens of kpc or that the emission originates from distinct galaxies. CO spectral line energy distributions imply physical conditions comparable to other SMGs and reveal further evidence that GN20.2a and GN20.2b are in different merging stages. We carry out a targeted search for CO emission from the 14 known B-band Lyman break galaxies (LBGs) in the field, tentatively detecting CO in a previously-undetected LBG and placing 3sigma upper limits on the CO luminosities of those that may lie within our bandpass. A blind search for emission line sources down to a 5sigma limiting CO luminosity of L_CO(2-1) = 8 X 10^9 K km/s pc^2 and covering Delta z = 0.0273 (~20 comoving Mpc) produces no other strong contenders associated with the proto-cluster.



قيم البحث

اقرأ أيضاً

141 - C. Diener , S. Lilly , C. Ledoux 2014
We present the spectroscopic confirmation of a $z=2.45$ proto-cluster. Its member galaxies lie within a radius of 1.4Mpc (physical) on the sky and within $Delta v pm 700$km/s along the line of sight. We estimate an overdensity of 10, suggesting that the structure has made the turn-around but is not assembled yet. Comparison to the Millennium simulation suggests that analogous structures evolve into $10^{14}-10^{15}$M$_{odot}$/h type dark matter haloes by $z=0$ qualifying the notion of proto-cluster. The search for the complete census of mock progenitor galaxies at $zsim2.5$ of these massive $z=0$ mock clusters reveals that they are widely spread over areas with a diameter of 3-20Mpc. This suggests that the optical selection of such proto-clusters can result in a rich diversity regarding their $z=0$ descendants. We also searched for signs of environmental differentiation in this proto-cluster. Whilst we see a weak trend for more massive and more quiescent galaxies in the proto-cluster, this is not statistically significant.
105 - M. S. Bothwell 2009
We present high spatial resolution (0.4, ~3.5 kpc) PdBI interferometric data on three ultra-luminous infrared galaxies (ULIRGs) at z~2: two submillimetre galaxies and one submillimetre faint star forming radio galaxy. The three galaxies have been ro- bustly detected in CO rotational transitions, either 12CO(J=4-3) or 12CO(J=3-2), allowing their sizes and gas masses to be accurately constrained. These are the highest spatial resolution observations observed to date (by a factor of ~2) for intermediate-excitation CO emission in z~2 ULIRGs. The galaxies appear extended over several resolution elements, having a mean radius of 3.7 kpc. High-resolution (0.3) combined MERLIN-VLA observations of their radio continua allow an analysis of the star formation behaviour of these galaxies, on comparable spatial scales to that of the CO observations. This matched beam approach sheds light on the spatial distribution of both molecular gas and star formation, and we can therefore calculate accurate star formation rates and gas surface densities: this allows us to place the three systems in the context of a Kennicutt-Schmidt (KS)-style star formation law. We find a difference in size between the CO and radio emission regions, and as such we suggest that using the spatial extent of the CO emission region to estimate the surface density of star formation may lead to error. This size difference also causes the star formation efficiencies within systems to vary by up to a factor of 5. We also find, with our new accurate sizes, that SMGs lie significantly above the KS relation, indicating that stars are formed more efficiently in these extreme systems than in other high-z star forming galaxies.
We present the serendipitous discovery of z=4.05 molecular gas CO emission lines with the IRAM Plateau de Bure interferometer coincident with GN20 and GN20.2, two luminous submillimeter galaxies (SMGs) in the Great Observatories Origins Deep Survey N orth field (GOODS-N). These are among the most distant submillimeter-selected galaxies reliably identified through CO emission and also some of the most luminous known. In terms of CO to bolometric luminosities, stellar mass and star formation rates (SFRs), these newly discovered z>4 SMGs are similar to z~1.5-3 SMGs studied to date. These z~4 SMGs have much higher specific SFRs than typical B-band dropout Lyman break galaxies at the same redshift. The stellar mass-SFR correlation for normal galaxies does not seem to evolve much further, between z~2 and z~4. A significant z=4.05 spectroscopic redshift spike is observed in GOODS-N, and a strong spatial overdensity of B-band dropouts and IRAC selected z>3.5 galaxies appears to be centered on the GN20 and GN20.2 galaxies. This suggests a proto-cluster structure with total mass ~10^14 Msun. Using photometry at mid-IR, submm and radio wavelengths, we show that reliable photometric redshifts (Dz/(1+z)~0.1) can be derived for SMGs over 1<z<4. This new photometric redshift technique has been used to provide a first estimate of the space density of 3.5<z<6 hyper-luminous starburst galaxies, and to show that they contribute substantially to the SFR density at early epochs. Many of these high-redshift starbursts will be within reach of Herschel. We find that the radio to mid-IR flux density ratio can be used to select z>3.5 starbursts, regardless of their submm/mm emission [abridged].
136 - C.L. Carilli 2010
We present a high resolution (down to 0.18), multi-transition imaging study of the molecular gas in the z = 4.05 submillimeter galaxy GN20. GN20 is one of the most luminous starburst galaxy known at z > 4, and is a member of a rich proto-cluster of g alaxies at z = 4.05 in GOODS-North. We have observed the CO 1-0 and 2-1 emission with the VLA, the CO 6-5 emission with the PdBI Interferometer, and the 5-4 emission with CARMA. The H_2 mass derived from the CO 1-0 emission is 1.3 times 10^{11} (alpha/0.8) Mo. High resolution imaging of CO 2-1 shows emission distributed over a large area, appearing as partial ring, or disk, of ~ 10kpc diameter. The integrated CO excitation is higher than found in the inner disk of the Milky Way, but lower than that seen in high redshift quasar host galaxies and low redshift starburst nuclei. The VLA CO 2-1 image at 0.2 resolution shows resolved, clumpy structure, with a few brighter clumps with intrinsic sizes ~ 2 kpc. The velocity field determined from the CO 6-5 emission is consistent with a rotating disk with a rotation velocity of ~ 570 km s^{-1} (using an inclination angle of 45^o), from which we derive a dynamical mass of 3 times 10^{11} msun within about 4 kpc radius. The star formation distribution, as derived from imaging of the radio synchrotron and dust continuum, is on a similar scale as the molecular gas distribution. The molecular gas and star formation are offset by ~ 1 from the HST I-band emission, implying that the regions of most intense star formation are highly dust-obscured on a scale of ~ 10 kpc. The large spatial extent and ordered rotation of this object suggests that this is not a major merger, but rather a clumpy disk accreting gas rapidly in minor mergers or smoothly from the proto-intracluster medium. ABSTRACT TRUNCATED
We present the first results of our spectroscopic follow-up of 6.5 < z < 10 candidate galaxies behind clusters of galaxies. We report the spectroscopic confirmation of an intrinsically faint Lyman break galaxy (LBG) identified as a z 850LP-band dropo ut behind the Bullet Cluster. We detect an emission line at {lambda} = 9412 {AA} at >5{sigma} significance using a 16 hr long exposure with FORS2 VLT. Based on the absence of flux in bluer broadband filters, the blue color of the source, and the absence of additional lines, we identify the line as Ly{alpha} at z = 6.740 pm 0.003. The integrated line flux is f = (0.7 pm 0.1 pm 0.3) times 10^{-17} erg^{-1} s^{-1} cm^{-2} (the uncertainties are due to random and flux calibration errors, respectively) making it the faintest Ly{alpha} flux detected at these redshifts. Given the magnification of {mu} = 3.0 pm 0.2 the intrinsic (corrected for lensing) flux is f^int = (0.23 pm 0.03 pm 0.10 pm 0.02) times 10^{-17} erg^{-1} s^{-1} cm^{-2} (additional uncertainty due to magnification), which is ~2-3 times fainter than other such measurements in z ~ 7 galaxies. The intrinsic H 160W-band magnitude of the object is m^int(H_160W)=27.57 pm 0.17, corresponding to 0.5 L* for LBGs at these redshifts. The galaxy is one of the two sub-L* LBG galaxies spectroscopically confirmed at these high redshifts (the other is also a lensed z = 7.045 galaxy), making it a valuable probe for the neutral hydrogen fraction in the early universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا