ترغب بنشر مسار تعليمي؟ اضغط هنا

51 - Yuan Yao , C. J. Umrigar 2021
We study several approaches to orbital optimization in selected configuration interaction plus perturbation theory (SCI+PT) methods, and test them on the ground and excited states of three molecules using the semistochastic heatbath configuration int eraction (SHCI) method. We discuss the ways in which the orbital optimization problem in SCI resembles and differs from that in complete active space self-consistent field (CASSCF). Starting from natural orbitals, these approaches divide into three classes of optimization methods according to how they treat coupling between configuration interaction (CI) coefficients and orbital parameters, namely uncoupled, fully coupled, and quasi-fully coupled methods. We demonstrate that taking the coupling into account is crucial for fast convergence and recommend two quasi-fully coupled methods for such applications: accelerated diagonal Newton and Broyden-Fletcher-Goldfarb-Shanno (BFGS).
We present a version of the T-moves approach for treating nonlocal pseudopotentials in diffusion Monte Carlo which has much smaller time-step errors than the existing T-moves approaches, while at the same time preserving desirable features such as th e upper-bound property for the energy. In addition, we modify the reweighting factor of the projector used in diffusion Monte Carlo to reduce the time-step error. The latter is applicable not only to pseudopotential calculations but to all-electron calculations as well.
We believe that a necessary first step in understanding the ground state properties of the spin-${scriptstylefrac{1}{2}}$ kagome Heisenberg antiferromagnet is a better understanding of this models very large number of low energy singlet states. A des cription of the low energy states that is both accurate and amenable for numerical work may ultimately prove to have greater value than knowing only what these properties are, in particular when these turn on the delicate balance of many small energies. We demonstrate how this program would be implemented using the basis of spin-singlet dimerized states, though other bases that have been proposed may serve the same purpose. The quality of a basis is evaluated by its participation in all the low energy singlets, not just the ground state. From an experimental perspective, and again in light of the small energy scales involved, methods that can deliver all the low energy states promise more robust predictions than methods that only refine a fraction of these states.
We extend our recently-developed heat-bath configuration interaction (HCI) algorithm, and our semistochastic algorithm for performing multireference perturbation theory, to the calculation of excited-state wavefunctions and energies. We employ time-r eversal symmetry, which reduces the memory requirements by more than a factor of two. An extrapolation technique is introduced to reliably extrapolate HCI energies to the Full CI limit. The resulting algorithm is used to compute the twelve lowest-lying potential energy surfaces of the carbon dimer using the cc-pV5Z basis set, with an estimated error in energy of 30-50 {mu}Ha compared to Full CI. The excitation energies obtained using our algorithm have a mean absolute deviation of 0.02 eV compared to experimental values. We also calculate the complete active-space (CAS) energies of the S0, S1, and T0 states of tetracene, which are of relevance to singlet fission, by fully correlating active spaces as large as 18 electrons in 36 orbitals.
213 - Julien Toulouse 2015
We provide a pedagogical introduction to the two main variants of real-space quantum Monte Carlo methods for electronic-structure calculations: variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC). Assuming no prior knowledge on the subject, we review in depth the Metropolis-Hastings algorithm used in VMC for sampling the square of an approximate wave function, discussing details important for applications to electronic systems. We also review in detail the more sophisticated DMC algorithm within the fixed-node approximation, introduced to avoid the infamous Fermionic sign problem, which allows one to sample a more accurate approximation to the ground-state wave function. Throughout this review, we discuss the statistical methods used for evaluating expectation values and statistical uncertainties. In particular, we show how to estimate nonlinear functions of expectation values and their statistical uncertainties.
The computational cost of quantum Monte Carlo (QMC) calculations of realistic periodic systems depends strongly on the method of storing and evaluating the many-particle wave function. Previous work [A. J. Williamson et al., Phys. Rev. Lett. 87, 2464 06 (2001); D. Alf`e and M. J. Gillan, Phys. Rev. B 70, 161101 (2004)] has demonstrated the reduction of the O(N^3) cost of evaluating the Slater determinant with planewaves to O(N^2) using localized basis functions. We compare four polynomial approximations as basis functions -- interpolating Lagrange polynomials, interpolating piecewise-polynomial-form (pp-) splines, and basis-form (B-) splines (interpolating and smoothing). All these basis functions provide a similar speedup relative to the planewave basis. The pp-splines have eight times the memory requirement of the other methods. To test the accuracy of the basis functions, we apply them to the ground state structures of Si, Al, and MgO. The polynomial approximations differ in accuracy most strongly for MgO and smoothing B-splines most closely reproduce the planewave value for of the variational Monte Carlo energy. Using separate approximations for the Laplacian of the orbitals increases the accuracy sufficiently to justify the increased memory requirement, making smoothing B-splines, with separate approximation for the Laplacian, the preferred choice for approximating planewave-represented orbitals in QMC calculations.
We argue that Coulomb blockade phenomena are a useful probe of the cross-over to strong correlation in quantum dots. Through calculations at low density using variational and diffusion quantum Monte Carlo (up to r_s ~ 55), we find that the addition e nergy shows a clear progression from features associated with shell structure to those caused by commensurability of a Wigner crystal. This cross-over (which occurs near r_s ~ 20 for spin-polarized electrons) is, then, a signature of interaction-driven localization. As the addition energy is directly measurable in Coulomb blockade conductance experiments, this provides a direct probe of localization in the low density electron gas.
We study interaction-induced localization of electrons in an inhomogeneous quasi-one-dimensional system--a wire with two regions, one at low density and the other high. Quantum Monte Carlo techniques are used to treat the strong Coulomb interactions in the low density region, where localization of electrons occurs. The nature of the transition from high to low density depends on the density gradient--if it is steep, a barrier develops between the two regions, causing Coulomb blockade effects. Ferromagnetic spin polarization does not appear for any parameters studied. The picture emerging here is in good agreement with measurements of tunneling between two wires.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا