ترغب بنشر مسار تعليمي؟ اضغط هنا

Introduction to the variational and diffusion Monte Carlo methods

214   0   0.0 ( 0 )
 نشر من قبل Julien Toulouse
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Julien Toulouse




اسأل ChatGPT حول البحث

We provide a pedagogical introduction to the two main variants of real-space quantum Monte Carlo methods for electronic-structure calculations: variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC). Assuming no prior knowledge on the subject, we review in depth the Metropolis-Hastings algorithm used in VMC for sampling the square of an approximate wave function, discussing details important for applications to electronic systems. We also review in detail the more sophisticated DMC algorithm within the fixed-node approximation, introduced to avoid the infamous Fermionic sign problem, which allows one to sample a more accurate approximation to the ground-state wave function. Throughout this review, we discuss the statistical methods used for evaluating expectation values and statistical uncertainties. In particular, we show how to estimate nonlinear functions of expectation values and their statistical uncertainties.



قيم البحث

اقرأ أيضاً

213 - Bastien Mussard 2017
We present the extension of variational Monte Carlo (VMC) to the calculation of electronic excitation energies and oscillator strengths using time-dependent linear-response theory. By exploiting the analogy existing between the linear method for wave -function optimisation and the generalised eigenvalue equation of linear-response theory, we formulate the equations of linear-response VMC (LR-VMC). This LR-VMC approach involves the first-and second-order derivatives of the wave function with respect to the parameters. We perform first tests of the LR-VMC method within the Tamm-Dancoff approximation using single-determinant Jastrow-Slater wave functions with different Slater basis sets on some singlet and triplet excitations of the beryllium atom. Comparison with reference experimental data and with configuration-interaction-singles (CIS) results shows that LR-VMC generally outperforms CIS for excitation energies and is thus a promising approach for calculating electronic excited-state properties of atoms and molecules.
The disiloxane molecule is a prime example of silicate compounds containing the Si-O-Si bridge. The molecule is of significant interest within the field of quantum chemistry, owing to the difficulty in theoretically predicting its properties. Herein, the linearisation barrier of disiloxane is investigated using a fixed-node diffusion Monte Carlo (FNDMC) approach, which is currently the most reliable {it ab initio} method in accounting for an electronic correlation. Calculations utilizing the density functional theory (DFT) and the coupled cluster method with single and double substitutions, including noniterative triples (CCSD(T))are carried out alongside FNDMC for comparison. Two families of basis sets are used to investigate the disiloxane linearisation barrier - Dunnings correlation-consistent basis sets cc-pV$x$Z ($x = $ D, T, and Q) and their core-valence correlated counterparts, cc-pCV$x$Z. It is concluded that FNDMC successfully predicts the disiloxane linearisation barrier and does not depend on the completeness of the basis sets as much as DFT or CCSD(T), thus establishing its suitability.
We calculate the linear and non-linear susceptibilities of periodic longitudinal chains of hydrogen dimers with different bond-length alternations using a diffusion quantum Monte Carlo approach. These quantities are derived from the changes in electr onic polarization as a function of applied finite electric field - an approach we recently introduced and made possible by the use of a Berry-phase, many-body electric-enthalpy functional. Calculated susceptibilities and hyper-susceptibilities are found to be in excellent agreement with the best estimates available from quantum chemistry - usually extrapolations to the infinite-chain limit of calculations for chains of finite length. It is found that while exchange effects dominate the proper description of the susceptibilities, second hyper-susceptibilities are greatly affected by electronic correlations. We also assess how different approximations to the nodal surface of the many-body wavefunction affect the accuracy of the calculated susceptibilities.
We propose a modified coupled cluster Monte Carlo algorithm that stochastically samples connected terms within the truncated Baker--Campbell--Hausdorff expansion of the similarity transformed Hamiltonian by construction of coupled cluster diagrams on the fly. Our new approach -- diagCCMC -- allows propagation to be performed using only the connected components of the similarity-transformed Hamiltonian, greatly reducing the memory cost associated with the stochastic solution of the coupled cluster equations. We show that for perfectly local, noninteracting systems, diagCCMC is able to represent the coupled cluster wavefunction with a memory cost that scales linearly with system size. The favorable memory cost is observed with the only assumption of fixed stochastic granularity and is valid for arbitrary levels of coupled cluster theory. Significant reduction in memory cost is also shown to smoothly appear with dissociation of a finite chain of helium atoms. This approach is also shown not to break down in the presence of strong correlation through the example of a stretched nitrogen molecule. Our novel methodology moves the theoretical basis of coupled cluster Monte Carlo closer to deterministic approaches.
We present an overview of the variational and diffusion quantum Monte Carlo methods as implemented in the CASINO program. We particularly focus on developments made in the last decade, describing state-of-the-art quantum Monte Carlo algorithms and so ftware and discussing their strengths and their weaknesses. We review a range of recent applications of CASINO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا