ترغب بنشر مسار تعليمي؟ اضغط هنا

The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg 76Ge and 15 kg natGe) to search for neutrinoless double beta decay in Ge-76. The next generation o f tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, is already in progress.
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 40-kg modular HPGe detector array to search for neutrinoless double beta decay in 76Ge. In view of the next generation of tonne-scale Ge-based 0nbb-decay s earches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The background rejection techniques to be applied to the data include cuts based on data reduction, pulse shape analysis, event coincidences, and time correlations. The Point Contact design of the DEMONSTRATOR 0s germanium detectors allows for significant reduction of gamma background.
The MAJORANA Collaboration is constructing the MAJORANA Demonstrator, an ultra-low background, 40-kg modular high purity Ge detector array to search for neutrinoless double-beta decay in Ge. In view of the next generation of tonne-scale Ge-based neut rinoless double-beta decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The current status of the Demonstrator is discussed, as are plans for its completion.
86 - J. Amare , S. Cebrian , C. Cuesta 2014
ANAIS (Annual modulation with NAI Scintillators) experiment aims to look for dark matter annual modulation with 250 kg of ultrapure NaI(Tl) scintillators at the Canfranc Underground Laboratory (LSC), in order to confirm the DAMA/LIBRA positive signal in a model-independent way. The detector will consist in an array of close-packed single modules, each of them coupled to two high efficiency Hamamatsu photomultipliers. Two 12.5 kg each NaI(Tl) crystals provided by Alpha Spectra are currently taking data at the LSC. These modules have shown an outstanding light collection efficiency (12-16 phe/keV), about the double of that from DAMA/LIBRA phase 1 detectors, which could enable reducing the energy threshold down to 1 keVee. ANAIS crystal radiopurity goals are fulfilled for 232Th and 238U chains, assuming equilibrium, and in the case of 40K, present crystals activity (although not at the required 20 ppb level) could be acceptable. However, a 210Pb contamination out-of-equilibrium has been identified and its origin traced back, so we expect it will be avoided in next prototypes. Finally, current status and prospects of the experiment considering several exposure and background scenarios are presented.
The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To rea lize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.
In the last decade direct detection Dark Matter (DM) experiments have increased enormously their sensitivity and ton-scale setups have been proposed, especially using germanium and xenon targets with double readout and background discrimination capab ilities. In light of this situation, we study the prospects for determining the parameters of Weakly Interacting Massive Particle (WIMP) DM (mass, spin-dependent (SD) and spin-independent (SI) cross section off nucleons) by combining the results of such experiments in the case of a hypothetical detection. In general, the degeneracy between the SD and SI components of the scattering cross section can only be removed using targets with different sensitivities to these components. Scintillating bolometers, with particle discrimination capability, very good energy resolution and threshold and a wide choice of target materials, are an excellent tool for a multitarget complementary DM search. We investigate how the simultaneous use of scintillating targets with different SD-SI sensitivities and/or light isotopes (as the case of CaF2 and NaI) significantly improves the determination of the WIMP parameters. In order to make the analysis more realistic we include the effect of uncertainties in the halo model and in the spin-dependent nuclear structure functions, as well as the effect of a thermal quenching different from 1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا