ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis techniques for background rejection at the MAJORANA DEMONSTRATOR

100   0   0.0 ( 0 )
 نشر من قبل Clara Cuesta
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 40-kg modular HPGe detector array to search for neutrinoless double beta decay in 76Ge. In view of the next generation of tonne-scale Ge-based 0nbb-decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The background rejection techniques to be applied to the data include cuts based on data reduction, pulse shape analysis, event coincidences, and time correlations. The Point Contact design of the DEMONSTRATOR 0s germanium detectors allows for significant reduction of gamma background.



قيم البحث

اقرأ أيضاً

132 - C. Cuesta , N. Abgrall , E. Aguayo 2014
The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To rea lize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.
The MAJORANA Collaboration is constructing a system containing 44 kg of high-purity Ge (HPGe) detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale to ~15 meV. To realize this, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/(ROI-t-y) in the 4 keV region of interest (ROI) around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials and analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements. Preliminary background results obtained during the engineering runs of the Demonstrator are presented.
The MAJORANA Collaboration is searching for the neutrinoless double-beta decay of the nucleus Ge-76. The MAJORANA DEMONSTRATOR is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a ton ne scale Ge-76-based search (the LEGEND collaboration). In the DEMONSTRATOR, germanium detectors operate in an ultra-pure vacuum cryostat at 80 K. One special challenge of an ultra-pure environment is to develop reliable cables, connectors, and electronics that do not significantly contribute to the radioactive background of the experiment. This paper highlights the experimental requirements and how these requirements were met for the MAJORANA DEMONSTRATOR, including plans to upgrade the wiring for higher reliability in the summer of 2018. Also described are requirements for LEGEND R&D efforts underway to meet these additional requirements.
The MAJORANA DEMONSTRATOR is an experiment constructed to search for neutrinoless double-beta decays in germanium-76 and to demonstrate the feasibility to deploy a ton-scale experiment in a phased and modular fashion. It consists of two modular array s of natural and $^{76}textrm{Ge}$-enriched germanium detectors totaling 44.1 kg (29.7 kg enriched detectors), located at the 4850 level of the Sanford Underground Research Facility in Lead, South Dakota, USA. Data taken with this setup since summer 2015 at different construction stages of the experiment show a clear reduction of the observed background index around the ROI for $0 ubetabeta$-decay search due to improvements in shielding. We discuss the statistical approaches to search for a $0 ubetabeta$-signal and derive the physics sensitivity for an expected exposure of $10,textrm{kg}{cdot}textrm{y}$ from enriched detectors using a profile likelihood based hypothesis test in combination with toy Monte Carlo data.
The MAJORANA Collaboration will seek neutrinoless double beta decay (0nbb) in 76Ge using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels be low 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed with a background goal of <3 counts/ROI-tonne-year, which is expected to scale down to <1 count/ROI-tonne-year for a tonne-scale experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This talk will discuss the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا