ﻻ يوجد ملخص باللغة العربية
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg 76Ge and 15 kg natGe) to search for neutrinoless double beta decay in Ge-76. The next generation of tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, is already in progress.
The MAJORANA Collaboration is constructing the MAJORANA Demonstrator, an ultra-low background, 40-kg modular high purity Ge detector array to search for neutrinoless double-beta decay in Ge. In view of the next generation of tonne-scale Ge-based neut
The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.
Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The MAJORANA Collaboration assembled an array of high purity Ge d
Neutrinoless double beta decay searches play a major role in determining neutrino properties, in particular the Majorana or Dirac nature of the neutrino and the absolute scale of the neutrino mass. The consequences of these searches go beyond neutrin
The MAJORANA Collaboration is searching for the neutrinoless double-beta decay of the nucleus $^{76}$Ge. The MAJORANA DEMONSTRATOR is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a