ترغب بنشر مسار تعليمي؟ اضغط هنا

Aromaticity is a well-known phenomenon in both physics and chemistry, and is responsible for many unique chemical and physical properties of aromatic molecules. The primary feature contributing to the stability of polycyclic aromatic hydrocarbons is the delocalised $pi$-electron clouds in the $2p_z$ orbitals of each of the $N$ carbon atoms. While it is known that electrons delocalize among the hybridized $sp^2$ orbitals, this paper proposes quantum walk as the mechanism by which the delocalization occurs, and also obtains how the functional chemical structures of these molecules arise naturally out of such a construction. We present results of computations performed for some benzoid polycyclic aromatic hydrocarbons in this regard, and show that the quantum walk-based approach does correctly predict the reactive sites and stability order of the molecules considered.
The quantum channels with memory, known as non-Markovian channels, are of crucial importance for a realistic description of a variety of physical systems, and pave ways for new methods of decoherence control by manipulating the properties of environm ent such as its frequency spectrum. In this work, the reduced dynamics of coin in a discrete-time quantum walk is characterized as a non-Markovian quantum channel. A general formalism is sketched to extract the Kraus operators for a $t$-step quantum walk. Non-Markovianity, in the sense of P-indivisibility of the reduced coin dynamics, is inferred from the non-monotonous behavior of distinguishably of two orthogonal states subjected to it. Further, we study various quantum information theoretic quantities of a qubit under the action of this channel, putting in perspective, the role such channels can play in various quantum information processing tasks.
Estimation of the coin parameter(s) is an important part of the problem of implementing more robust schemes for quantum simulation using quantum walks. We present the estimation of the quantum coin parameter used for one-dimensional discrete-time qua ntum walk evolution using machine learning algorithms on their probability distributions. We show that the models we have implemented are able to estimate these evolution parameters to a good accuracy level. We also implement a deep learning model that is able to predict multiple parameters simultaneously. Since discrete-time quantum walks can be used as quantum simulators, these models become important when extrapolating the quantum walk parameters from the probability distributions of the quantum system that is being simulated.
Quantum effects such as the environment assisted quantum transport (ENAQT) displayed in photosynthetic Fenna-Mathews-Olson (FMO) complex has been simulated on analog quantum simulators. Digital quantum simulations offer greater universality and flexi bility over analog simulations. However, digital quantum simulations of open quantum systems face a theoretical challenge; one does not know the solutions of the continuous time master equation for developing quantum gate operators. We give a theoretical framework for digital quantum simulation of ENAQT by introducing new quantum evolution operators. We develop the dynamical equation for the operators and prove that it is an analytical solution of the master equation. As an example, using the dynamical equations, we simulate the FMO complex in the digital setting, reproducing theoretical and experimental evidence of the dynamics. The framework gives an optimal method for {quantum circuit} implementation, giving a log reduction in complexity over known methods. The generic framework can be extrapolated to study other open quantum systems.
The unique features of quantum walk, such as the possibility of the walker to be in superposition ofthe position space and get entangled with the position space, provides inherent advantages that canbe captured to design highly secure quantum communi cation protocols. Here we propose two quan-tum direct communication protocols, a Quantum Secure Direct Communication (QSDC) protocoland a Controlled Quantum Dialogue (CQD) protocol using discrete-time quantum walk on a cycle.The proposed protocols are unconditionally secure against various attacks such as the intercept-resend attack, the denial of service attack, and the man-in-the-middle attack. Additionally, theproposed CQD protocol is shown to be unconditionally secure against an untrusted service providerand both the protocols are shown more secure against the intercept resend attack as compared tothe qubit based LM05/DL04 protocol.
We study the percolation of a quantum particle on quasicrystal lattices and compare it with the square lattice. For our study, we have considered quasicrystal lattices modelled on the pentagonally symmetric Penrose tiling and the octagonally symmetri c Ammann-Beenker tiling. The dynamics of the quantum particle is modelled using continuous-time quantum walk (CTQW) formalism. We present a comparison of the behaviour of the CTQW on the two aperiodic quasicrystal lattices and the square lattice when all the vertices are connected and when disorder is introduced in the form of disconnections between the vertices. Unlike on a square lattice, we see a significant fraction of quantum state localised around the origin in quasicrystal lattice. With increase in disorder, the percolation probability of a particle on a quasicrystal lattice decreases significantly faster when compared to the square lattice. This study sheds light on the minimum fraction of disconnections allowed to see percolation of quantum particle on these quasicrystal lattices.
Quantum walk is a synonym for multi-path interference and faster spread of a particle in a superposition of position space. We study the effects of a quantum mechanical interaction modeled to mimic quantum mechanical gravitational interaction between the two states of the walkers. The study has been carried out to investigate the entanglement generation between the two quantum walkers that do not otherwise interact. We see that the states do in fact get entangled more and more as the quantum walks unfold, and there is an interesting dependence of entanglement generation on the mass of the two particles performing the walks. We also show the sensitivity of entanglement between the two walkers on the noise introduced in one of the walks. The signature of quantum effects due to gravitational interactions highlights the potential role of quantum systems in probing the nature of gravity.
We present a quantum algorithm for ranking the nodes on a network in their order of importance. The algorithm is based on a directed discrete-time quantum walk, and works on all directed networks. This algorithm can theoretically be applied to the en tire internet, and thus can function as a quantum PageRank algorithm. Our analysis shows that the hierarchy of quantum rank matches well with the hierarchy of classical rank for directed tree network and for non-trivial cyclic networks, the hierarchy of quantum ranks do not exactly match to the hierarchy of the classical rank. This highlights the role of quantum interference and fluctuations in networks and the importance of using quantum algorithms to rank nodes in quantum networks. Another application this algorithm can envision is to model the dynamics on networks mimicking the chemical complexes and rank active centers in order of reactivities. Since discrete-time quantum walks are implementable on current quantum processing systems, this algorithm will also be of practical relevance in analysis of quantum architecture.
In discrete-time quantum walk (DTQW) the walkers coin space entangles with the position space after the very first step of the evolution. This phenomenon may be exploited to obtain the value of the coin parameter $theta$ by performing measurements on the sole position space of the walker. In this paper, we evaluate the ultimate quantum limits to precision for this class of estimation protocols, and use this result to assess measurement schemes having limited access to the position space of the walker in one dimension. We find that the quantum Fisher information (QFI) of the walkers position space $H_w(theta)$ increases with $theta$ and with time which, in turn, may be seen as a metrological resource. We also find a difference in the QFI of {em bounded} and {em unbounded} DTQWs, and provide an interpretation of the different behaviors in terms of interference in the position space. Finally, we compare $H_w(theta)$ to the full QFI $H_f(theta)$, i.e., the QFI of the walkers position plus coin state, and find that their ratio is dependent on $theta$, but saturates to a constant value, meaning that the walker may probe its coin parameter quite faithfully.
We present a scheme for multi-bit quantum random number generation using a single qubit discrete-time quantum walk in one-dimensional space. Irrespective of the initial state of the qubit, quantum interference and entanglement of particle with the po sition space in the walk dynamics certifies high randomness in the system. Quantum walk in a position space of dimension $2^l+1$ ensures string of $(l+ 2)$-bits of random numbers from a single measurement. Bit commitment with the position space and control over the spread of the probability distribution in position space enable us with options to extract multi-bit random numbers. This highlights the {it power of one qubit} , its practical importance in generating multi-bit string in single measurement and the role it can play in quantum communication and cryptographic protocols. This can be further extended with quantum walks in higher dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا