ﻻ يوجد ملخص باللغة العربية
We present a quantum algorithm for ranking the nodes on a network in their order of importance. The algorithm is based on a directed discrete-time quantum walk, and works on all directed networks. This algorithm can theoretically be applied to the entire internet, and thus can function as a quantum PageRank algorithm. Our analysis shows that the hierarchy of quantum rank matches well with the hierarchy of classical rank for directed tree network and for non-trivial cyclic networks, the hierarchy of quantum ranks do not exactly match to the hierarchy of the classical rank. This highlights the role of quantum interference and fluctuations in networks and the importance of using quantum algorithms to rank nodes in quantum networks. Another application this algorithm can envision is to model the dynamics on networks mimicking the chemical complexes and rank active centers in order of reactivities. Since discrete-time quantum walks are implementable on current quantum processing systems, this algorithm will also be of practical relevance in analysis of quantum architecture.
Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete
The unique features of quantum walk, such as the possibility of the walker to be in superposition ofthe position space and get entangled with the position space, provides inherent advantages that canbe captured to design highly secure quantum communi
We study the quantum walk search algorithm of Shenvi, Kempe and Whaley [PRA 67 052307 (2003)] on data structures of one to two spatial dimensions, on which the algorithm is thought to be less efficient than in three or more spatial dimensions. Our ai
Here we present neutrino oscillation in the frame-work of quantum walks. Starting from a one spatial dimensional discrete-time quantum walk we present a scheme of evolutions that will simulate neutrino oscillation. The set of quantum walk parameters
Quantum percolation describes the problem of a quantum particle moving through a disordered system. While certain similarities to classical percolation exist, the quantum case has additional complexity due to the possibility of Anderson localisation.