ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitationally induced entanglement dynamics between two quantum walkers

389   0   0.0 ( 0 )
 نشر من قبل Himanshu Badhani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum walk is a synonym for multi-path interference and faster spread of a particle in a superposition of position space. We study the effects of a quantum mechanical interaction modeled to mimic quantum mechanical gravitational interaction between the two states of the walkers. The study has been carried out to investigate the entanglement generation between the two quantum walkers that do not otherwise interact. We see that the states do in fact get entangled more and more as the quantum walks unfold, and there is an interesting dependence of entanglement generation on the mass of the two particles performing the walks. We also show the sensitivity of entanglement between the two walkers on the noise introduced in one of the walks. The signature of quantum effects due to gravitational interactions highlights the potential role of quantum systems in probing the nature of gravity.

قيم البحث

اقرأ أيضاً

101 - A. Landry , M. B. Paranjape 2016
In this letter, we calculate the probability for resonantly induced transitions in quantum states due to time dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We c onsider a system of ultra cold neutrons (UCN), which are organized according to the energy levels of the Schrodinger equation in the presence of the earths gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency $omega$. The driving force is created by oscillating a macroscopic mass in the neighbourhood of the system of neutrons. The neutrons decay in 880 seconds while the probability of transitions increase as $t^2$. Hence the optimal strategy is to drive the system for 2 lifetimes. The transition amplitude then is of the order of $1.06times 10^{-5}$ hence with a million ultra cold neutrons, one should be able to observe transitions.
We study the evolution of the two scalar fields entangled via a mutual interaction in an expanding spacetime. We compute the logarithmic negativity to leading order in perturbation theory and show that for lowest order in the coupling constants, the mutual interaction will give rise to the survival of the quantum correlations in the limit of the smooth expansion. The results suggest that interacting fields can codify more information about the underlying expansion spacetime and lead to interesting observable effects.
Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks. Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm and cold atomic vapours, individual atoms and ions, and defects in solid-state systems. Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres. The entangled quantum state is distributed by an optical field at a designed wavelength near 1550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.
Establishing quantum entanglement between individual nodes is crucial for building large-scale quantum networks, enabling secure quantum communication, distributed quantum computing, enhanced quantum metrology and fundamental tests of quantum mechani cs. However, the shared entanglements have been merely observed in either extremely low-temperature or well-isolated systems, which limits the quantum networks for the real-life applications. Here, we report the realization of heralding quantum entanglement between two atomic ensembles at room temperature, where each of them contains billions of motional atoms. By measuring the mapped-out entangled state with quantum interference, concurrence and correlation, we strongly verify the existence of a single excitation delocalized in two atomic ensembles. Remarkably, the heralded quantum entanglement of atomic ensembles can be operated with the feature of delay-choice, which illustrates the essentiality of the built-in quantum memory. The demonstrated building block paves the way for constructing quantum networks and distributing entanglement across multiple remote nodes at ambient conditions.
We investigate the dynamical behavior of entanglement in a system made by two solid-state emitters, as two quantum dots, embedded in two separated micro-cavities. In these solid-state systems, in addition to the coupling with the cavity mode, the emi tter is coupled to a continuum of leaky modes providing additional losses and it is also subject to a phonon-induced pure dephasing mechanism. We model this physical configuration as a multipartite system composed by two independent parts each containing a qubit embedded in a single-mode cavity, exposed to cavity losses, spontaneous emission and pure dephasing. We study the time evolution of entanglement of this multipartite open system finally applying this theoretical framework to the case of currently available solid-state quantum dots in micro-cavities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا