ترغب بنشر مسار تعليمي؟ اضغط هنا

We present and discuss three extremely r-process enhanced stars located in the massive dwarf spheriodal galaxy Fornax. These stars are very unique with an extreme Eu enrichment ($1.25le mathrm{[Eu/Fe]} le 1.45$) at high metallicities ($-1.3 le mathrm {[Fe/H]} le -0.8$). They have the largest Eu abundances ever observed in a dwarf galaxy opening new opportunities to further understand the origin of heavy elements formed by the r-process. We derive stellar abundances of Co, Zr, La, Ce, Pr, Nd, Er, and Lu using 1-dimensional, local thermodynamic equilibrium (LTE) codes and model atmospheres in conjunction with state-of-the art yield predictions. We derive Zr in the largest sample of stars (105) known to date in a dwarf galaxy. Accurate stellar abundances combined with a careful assessment of the yield predictions have revealed three metal-rich stars in Fornax showing a pure r-process pattern. We define a new class of stars, namely Eu-stars, as r-II stars (i.e., [Eu/Fe]$>1$) at high metallicities (i.e., $mathrm{[Fe/H]}gtrsim -1.5$). The stellar abundance pattern contains Lu, observed for the first time in a dwarf galaxy, and reveals that a late burst of star formation has facilitated extreme r-process enhancement late in the galaxys history ($<4$,Gyr ago). Due to the large uncertainties associated with the nuclear physics input in the yield predictions, we cannot yet determine the r-process site leading to the three Eu-stars in Fornax. Our results demonstrate that extremely r-rich stars are not only associated with ultra faint low-mass dwarf galaxies, but can be born also in massive dwarf galaxies.
67 - L. Sbordone 2020
We report on the discovery and chemical abundance analysis of the first CEMP-r/s star detected in the Sagittarius dwarf Spheroidal Galaxy, by means of UVES high resolution spectra. The star, found in the outskirts of Sgr dSph, along the main body maj or axis, is a moderately metal poor giant (T$_{eff}$=4753 K, log g=1.75, [Fe/H]=-1.55), with [C/Fe]=1.13 placing it in the so-called high-carbon band, and strong s-process and r-process enrichment ([Ba/Fe]=1.4, [Eu/Fe]=1.01). Abundances of 29 elements from C to Dy were obtained. The chemical pattern appears to be best fitted by a scenario where an r-process pollution event pre-enriched the material out of which the star was born as secondary in a binary system whose primary evolved through the AGB phase, providing C and s-process enrichment.
Deriving the metallicity, [Fe/H], in low-resolution spectra of carbon-enhanced metal-poor (CEMP) stars is a tedious task that, owing to the large number of line blends, often leads to uncertainties on [Fe/H] exceeding 0.25dex. The CEMP stars increase in number with decreasing [Fe/H] and some of these are known to be bona fide second generation halo stars. Hence, knowing their [Fe/H] is important for tracing the formation and chemical evolution of the Galaxy. Here, we aim to improve the [Fe/H] measurements in low-resolution spectra by avoiding issues related to blends. We improve our chemical tagging in such spectra at low metallicities. We developed an empirical way of deriving [Fe/H] in CEMP (and C-normal) stars that relates the equivalent width (EW) of strong lines, which remain detectable in lower-resolution, metal-poor spectra. The best [Fe/H] tracers are found to be Cr I and Ni I, which both show strong transitions in spectral regions that are free of molecular bands (between ~5200-6800A, a region accessible to most surveys). We derive different relations for dwarfs and giants. The relations are valid in the ranges ~-3<[Fe/H]<-0.5 and 10<EW<800mA (Cr) or [Fe/H]>-3.2 and EW>5mA (Ni), depending on the element and line as well as the stellar evolutionary stage. The empirical relations are valid for both CEMP and C-normal stars and have been proven to be accurate tracers in a sample of ~400 stars (mainly giants). The metallicities are accurate to within ~0.2 depending on the sample and resolution, and the empirical relations are robust to within 0.05-0.1dex. Our relations will improve the metallicity determination in future surveys, which will encounter a large number of CEMP stars, and will greatly speed up the process of determining [Fe/H] as the EWs only need to be measured in two or three lines in relatively clean regions compared to dealing with numerous blended Fe lines. Abrigded.
We aim to establish and improve the accuracy level of asteroseismic estimates of mass, radius, and age of giant stars. This can be achieved by measuring independent, accurate, and precise masses, radii, effective temperatures and metallicities of lon g period eclipsing binary stars with a red giant component that displays solar-like oscillations. We measured precise properties of the three eclipsing binary systems KIC 7037405, KIC 9540226, and KIC 9970396 and estimated their ages be $5.3pm0.5$, $3.1pm0.6$, and $4.8pm0.5$ Gyr. The measurements of the giant stars were compared to corresponding measurements of mass, radius, and age using asteroseismic scaling relations and grid modeling. We found that asteroseismic scaling relations without corrections to $Delta u$ systematically overestimate the masses of the three red giants by 11.7%, 13.7%, and 18.9%, respectively. However, by applying theoretical correction factors $f_{Delta u}$ according to Rodrigues et al. (2017), we reached general agreement between dynamical and asteroseismic mass estimates, and no indications of systematic differences at the precision level of the asteroseismic measurements. The larger sample investigated by Gaulme et al. (2016) showed a much more complicated situation, where some stars show agreement between the dynamical and corrected asteroseismic measures while others suggest significant overestimates of the asteroseismic measures. We found no simple explanation for this, but indications of several potential problems, some theoretical, others observational. Therefore, an extension of the present precision study to a larger sample of eclipsing systems is crucial for establishing and improving the accuracy of asteroseismology of giant stars.
130 - M. Hanke , A. Koch , C. J. Hansen 2016
We present our detailed spectroscopic analysis of the chemical composition of four red giant stars in the halo globular cluster NGC 6426. We obtained high-resolution spectra using the Magellan2/MIKE spectrograph, from which we derived equivalent widt hs and subsequently computed abundances of 24 species of 22 chemical elements. For the purpose of measuring equivalent widths, we developed a new semi-automated tool, called EWCODE. We report a mean Fe content of [Fe/H] = -2.34$pm$0.05 dex (stat.) in accordance with previous studies. At a mean $alpha$-abundance of [(Mg,Si,Ca)/3 Fe] = 0.39$pm$0.03 dex, NGC 6426 falls on the trend drawn by the Milky Way halo and other globular clusters at comparably low metallicities. The distribution of the lighter $alpha$-elements as well as the enhanced ratio [Zn/Fe] = 0.39 dex could originate from hypernova enrichment of the pre-cluster medium. We find tentative evidence for a spread in the elements Mg, Si, and Zn, indicating an enrichment scenario, where ejecta of evolved massive stars of a slightly older population polluted a newly born younger one. The heavy element abundances in this cluster fit well into the picture of metal-poor globular clusters, which in that respect appear to be remarkably homogeneous. The pattern of the neutron-capture elements heavier than Zn point towards an enrichment history governed by the r-process with only little -if any- sign of s-process contributions. This finding is supported by the striking similarity of our program stars to the metal-poor field star HD 108317.
92 - C. J. Hansen , P. Jofre , A. Koch 2016
Blue metal-poor stars (BMPs) are main sequence stars that appear bluer and more luminous than normal turnoff stars. They were originally singled out by using B-V and U-B colour cuts. Early studies found that a larger fraction of field BMP stars were binaries compared to normal halo stars. Thus, BMP stars are ideal field blue straggler candidates for investigating internal stellar evolution processes and binary interaction. In particular, the presence or depletion in lithium in their spectra is a powerful indicator as to their origin. They are either old, halo blue stragglers experiencing internal mixing processes or mass transfer (Li-depletion), or intermediate-age, single stars of possibly extragalactic origin (2.2dex halo plateau Li). However, we note that internal mixing processes can lead to an increased level of Li. Hence, this study combines photometry and spectroscopy to unveil the origin of various BMP stars. We first show how to separate binaries from young blue stars using photometry, metallicity, and lithium. Using a sample of 80 BMP stars (T>6300K), we find that 97% of the BMP binaries have V-Ks_0 < 1.08$pm0.03$, while BMP stars that are not binaries lie above this cut in 2/3 of the cases. This cut can help classify stars which lack radial velocities from follow-up observations. We trace the origin of two BMP stars from the photometric sample by conducting a full chemical analysis using new high-resolution and high SN spectra. Based on their radial velocities, Li, alpha, and s- and r-process abundances we show that BPS CS22874-042 is a single star (A(Li)$=2.38pm0.10$dex) while with A(Li)$=2.23pm0.07$dex CD-48 2445 is a binary, contrary to earlier findings. Our analysis emphasises that field blue stragglers can be segregated from single metal-poor stars, using V-Ks colours with a fraction of single stars polluting the binary sample, but not vice versa.(Abridged)
From stellar spectra, a variety of physical properties of stars can be derived. In particular, the chemical composition of stellar atmospheres can be inferred from absorption line analyses. These provide key information on large scales, such as the f ormation of our Galaxy, down to the small-scale nucleosynthesis processes that take place in stars and supernovae. By extending the observed wavelength range toward bluer wavelengths, we optimize such studies to also include critical absorption lines in metal-poor stars, and allow for studies of heavy elements (Z>38) whose formation processes remain poorly constrained. In this context, spectrographs optimized for observing blue wavelength ranges are essential, since many absorption lines at redder wavelengths are too weak to be detected in metal-poor stars. This means that some elements cannot be studied in the visual-redder regions, and important scientific tracers and science cases are lost. The present era of large public surveys will target millions of stars. Here we describe the requirements driving the design of the forthcoming survey instrument 4MOST, a multi-object spectrograph commissioned for the ESO VISTA 4m-telescope. We focus here on high-density, wide-area survey of stars and the science that can be achieved with high-resolution stellar spectroscopy. Scientific and technical requirements that governed the design are described along with a thorough line blending analysis. For the high-resolution spectrograph, we find that a sampling of >2.5 (pixels per resolving element), spectral resolution of 18000 or higher, and a wavelength range covering 393-436 nm, is the most well-balanced solution for the instrument. A spectrograph with these characteristics will enable accurate abundance analysis (+/-0.1 dex) in the blue and allow us to confront the outlined scientific questions. (abridged)
We present a grid of computed non-local thermodynamic equilibrium (NLTE) equivalent widths (EW) and NLTE abundance corrections for four Ba II lines: 4554, 5853, 6141, and 6496 A. The grid can be useful in deriving the NLTE barium abundance in stars h aving parameters in the following ranges: effective temperature from 4000 K to 6500 K, surface gravity log g from 0 to 5, microturbulent velocity 0 km s^-1 to 3 km s^-1, metallicity [Fe/H] from -2 to +0.5, and [Ba/Fe] from -0.4 to +0.6. The NLTE abundance can be either derived by EW interpolation (using the observed Ba II line EW) or by using the NLTE correction applied to a previously determined LTE abundance. Ba II line equivalent widths and the NLTE corrections were calculated using the updated MULTI code and the Ba II atomic model that was previously applied to determine the NLTE barium abundance in different types of stars. The grid is available on-line through the web, and we find that the grid Ba NLTE corrections are almost as accurate as direct NLTE profile fitting (to within 0.05-0.08 dex). For the weakest Ba II line (5853 A) the LTE abundances almost agree with the NLTE abundances, whereas the other three Ba II lines, 4554, 6141, and 6496 A, need NLTE corrections even at the highest metallicities tested here. The 4554 A line is extremely strong and should not be used for abundance analysis above [Fe/H]= -1. Furthermore, we tested the impact of different model atmospheres and spectrum synthesis codes and found average differences of 0.06 dex and 0.09 dex, respectively, for all four lines. At these metallicities we find an average Delta NLTE of +/-0.1 dex for the three useful Ba lines for subsolar cool dwarfs.
Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier th an Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to the production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.
We present an elemental abundance analysis for four newly discovered ultra metal-poor stars from the Hamburg/ESO survey, with $mathrm{[Fe/H]}leq-4$. Based on high-resolution, high signal-to-noise spectra, we derive abundances for 17 elements in the r ange from Li to Ba. Three of the four stars exhibit moderate to large over-abundances of carbon, but have no enhancements in their neutron-capture elements. The most metal-poor star in the sample, HE~0233$-$0343 ($mathrm{[Fe/H]} = -4.68$), is a subgiant with a carbon enhancement of $mathrm{[C/Fe]}= +3.5$, slightly above the carbon-enhancement plateau suggested by Spite et al. No carbon is detected in the spectrum of the fourth star, but the quality of its spectrum only allows for the determination of an upper limit on the carbon abundance ratio of $mathrm{[C/Fe]} < +1.7$. We detect lithium in the spectra of two of the carbon-enhanced stars, including HE~0233$-$0343. Both stars with Li detections are Li-depleted, with respect to the Li plateau for metal-poor dwarfs found by Spite & Spite. This suggests that whatever site(s) produced C either do not completely destroy lithium, or that Li has been astrated by early-generation stars and mixed with primordial Li in the gas that formed the stars observed at present. The derived abundances for the $alpha$-elements and iron-peak elements of the four stars are similar to those found in previous large samples of extremely and ultra metal-poor stars. Finally, a large spread is found in the abundances of Sr and Ba for these stars, possibly influenced by enrichment from fast rotating stars in the early universe.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا