ترغب بنشر مسار تعليمي؟ اضغط هنا

Grid of theoretical NLTE equivalent widths of four Ba II lines and barium abundance in cool stars

212   0   0.0 ( 0 )
 نشر من قبل Sergey Korotin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a grid of computed non-local thermodynamic equilibrium (NLTE) equivalent widths (EW) and NLTE abundance corrections for four Ba II lines: 4554, 5853, 6141, and 6496 A. The grid can be useful in deriving the NLTE barium abundance in stars having parameters in the following ranges: effective temperature from 4000 K to 6500 K, surface gravity log g from 0 to 5, microturbulent velocity 0 km s^-1 to 3 km s^-1, metallicity [Fe/H] from -2 to +0.5, and [Ba/Fe] from -0.4 to +0.6. The NLTE abundance can be either derived by EW interpolation (using the observed Ba II line EW) or by using the NLTE correction applied to a previously determined LTE abundance. Ba II line equivalent widths and the NLTE corrections were calculated using the updated MULTI code and the Ba II atomic model that was previously applied to determine the NLTE barium abundance in different types of stars. The grid is available on-line through the web, and we find that the grid Ba NLTE corrections are almost as accurate as direct NLTE profile fitting (to within 0.05-0.08 dex). For the weakest Ba II line (5853 A) the LTE abundances almost agree with the NLTE abundances, whereas the other three Ba II lines, 4554, 6141, and 6496 A, need NLTE corrections even at the highest metallicities tested here. The 4554 A line is extremely strong and should not be used for abundance analysis above [Fe/H]= -1. Furthermore, we tested the impact of different model atmospheres and spectrum synthesis codes and found average differences of 0.06 dex and 0.09 dex, respectively, for all four lines. At these metallicities we find an average Delta NLTE of +/-0.1 dex for the three useful Ba lines for subsolar cool dwarfs.



قيم البحث

اقرأ أيضاً

We study the formation of B I lines in a grid of cool stellar model atmospheres without the assumption of local thermodynamic equilibrium (LTE). The non-LTE modelling includes the effect of other lines blending with the B I resonance lines. Except fo r the cases where the B I lines are very strong, the departures from LTE relevant for the resonance lines can be described as an overionisation effect and an optical-pumping effect. This causes the lines to be weaker than in LTE so that an abundance analysis assuming LTE will underestimate stellar boron abundances. We present non-LTE abundance corrections useful to improve on abundances derived from the B I 250 nm and 209 nm lines under the LTE assumption. Application of the results on literature data indicates that the B/Fe ratio in metal-poor stars is constant.
105 - C. E. Jones , C. Tycner , 2011
Focusing on B-emission stars, we investigated a set of H$alpha$ equivalent widths calculated from observed spectra acquired over a period of about 4 years from 2003 to 2007. During this time, changes in equivalent width for our program stars were mon itored. We have found a simple statistical method to quantify these changes in our observations. This statistical test, commonly called the F ratio, involves calculating the ratio of the external and internal error. We show that the application of this technique can be used to place bounds on the degree of variability of Be stars. This observational tool provides a quantitative way to find Be stars at particular stages of variability requiring relatively little observational data.
We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescop e at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The YI and ZrI abundances are lower than Ba, La and Eu, but higher than the light elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe]>0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe]<0.54.
We constructed a comprehensive model atom for Cione -- Cii using the most up-to-date atomic data available and evaluated the non-local thermodynamic equilibrium (NLTE) line formation for Cione and Cii in classical 1D models representing the atmospher es of A and late B-type stars. Our NLTE calculations predict the emission that appears at effective temperature of 9250 to 10,500~K depending on log~$g$ in the Cione 8335, 9405,AA singlet lines and at Teff~$>$~15,000~K (log~$g$ = 4) in the Cione 9061 -- 9111,AA,, 9603 -- 9658,AA, triplet lines. A prerequisite of the emission phenomenon is the overionization-recombination mechanism resulting in a depopulation of the lower levels of Cione to a greater extent than the upper levels. Extra depopulation of the lower levels of the transitions corresponding to the near-infrared lines, is caused by photon loss in the UV lines Cione 2479, 1930, and 1657,AA. We analysed the lines of Cione and Cii in Vega, HD~73666, Sirius, 21~Peg, $pi$~Cet, HD~22136, and $iota$ Her taking advantage of their observed high-resolution spectra. The Cione emission lines were detected in the four hottest stars, and they were well reproduced in our NLTE calculations. For each star, the mean NLTE abundances from lines of the two ionization stages, Cione and Cii, including the Cione emission lines, were found to be consistent. We show that the predicted Cione emission phenomenon depends strongly on whether accurate or approximate electron-impact excitation rates are applied.
75 - Upakul Mahanta 2016
Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemi cal enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ~ 42000) of these objects spanning a wavelength range from 4000 to 6800 A, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature T_eff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] > 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars with [Ba/Fe] ~ 0.4. The derived abundances of the elements are interpreted on the basis of existing theories for understanding their origin and evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا