ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate theoretically the suppression of two-body losses when the on-site loss rate is larger than all other energy scales in a lattice. This work quantitatively explains the recently observed suppression of chemical reactions between two rota tional states of fermionic KRb molecules confined in one-dimensional tubes with a weak lattice along the tubes [Yan et al., Nature 501, 521-525 (2013)]. New loss rate measurements performed for different lattice parameters but under controlled initial conditions allow us to show that the loss suppression is a consequence of the combined effects of lattice confinement and the continuous quantum Zeno effect. A key finding, relevant for generic strongly reactive systems, is that while a single-band theory can qualitatively describe the data, a quantitative analysis must include multiband effects. Accounting for these effects reduces the inferred molecule filling fraction by a factor of five. A rate equation can describe much of the data, but to properly reproduce the loss dynamics with a fixed filling fraction for all lattice parameters we develop a mean-field model and benchmark it with numerically exact time-dependent density matrix renormalization group calculations.
The understanding of how classical dynamics can emerge in closed quantum systems is a problem of fundamental importance. Remarkably, while classical behavior usually arises from coupling to thermal fluctuations or random spectral noise, it may also b e an innate property of certain isolated, periodically driven quantum systems. Here, we experimentally realize the simplest such system, consisting of two coupled, kicked quantum rotors, by subjecting a coherent atomic matter wave to two periodically pulsed, incommensurate optical lattices. Momentum transport in this system is found to be radically different from that in a single kicked rotor, with a breakdown of dynamical localization and the emergence of classical diffusion. Our observation, which confirms a long-standing prediction for many-dimensional quantum-chaotic systems, sheds new light on the quantum-classical correspondence.
We experimentally study one-dimensional, lattice-modulated Bose gases in the presence of an uncorrelated disorder potential formed by localized impurity atoms, and compare to the case of correlated quasi-disorder formed by an incommensurate lattice. While the effects of the two disorder realizations are comparable deeply in the strongly interacting regime, both showing signatures of Bose glass formation, we find a dramatic difference near the superfluid-to-insulator transition. In this transition region, we observe that random, uncorrelated disorder leads to a shift of the critical lattice depth for the breakdown of transport as opposed to the case of correlated quasi-disorder, where no such shift is seen. Our findings, which are consistent with recent predictions for interacting bosons in one dimension, illustrate the important role of correlations in disordered atomic systems.
Atomic quantum gases in optical lattices serve as a versatile testbed for important concepts of modern condensed-matter physics. The availability of methods to characterize strongly correlated phases is crucial for the study of these systems. Diffrac tion techniques to reveal long-range spatial structure, which may complement emph{in situ} detection methods, have been largely unexplored. Here we experimentally demonstrate that Bragg diffraction of neutral atoms can be used for this purpose. Using a one-dimensional Bose gas as a source of matter waves, we are able to infer the spatial ordering and on-site localization of atoms confined to an optical lattice. We also study the suppression of inelastic scattering between incident matter waves and the lattice-trapped atoms, occurring for increased lattice depth. Furthermore, we use atomic de Broglie waves to detect forced antiferromagnetic ordering in an atomic spin mixture, demonstrating the suitability of our method for the non-destructive detection of spin-ordered phases in strongly correlated atomic gases.
We report the observation of many-body interaction effects for a homonuclear bosonic mixture in a three-dimensional optical lattice with variable state dependence along one axis. Near the superfluid-to-Mott insulator transition for one component, we find that the presence of a second component can reduce the apparent superfluid coherence, most significantly when it either experiences a strongly localizing lattice potential or none at all. We examine this effect by varying the relative populations and lattice depths, and discuss the observed behavior in view of recent proposals for scattering from impurities and of atom-phonon coupling for atoms immersed in a superfluid.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا