ترغب بنشر مسار تعليمي؟ اضغط هنا

Glassy behavior in a binary atomic mixture

59   0   0.0 ( 0 )
 نشر من قبل Bryce Gadway
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally study one-dimensional, lattice-modulated Bose gases in the presence of an uncorrelated disorder potential formed by localized impurity atoms, and compare to the case of correlated quasi-disorder formed by an incommensurate lattice. While the effects of the two disorder realizations are comparable deeply in the strongly interacting regime, both showing signatures of Bose glass formation, we find a dramatic difference near the superfluid-to-insulator transition. In this transition region, we observe that random, uncorrelated disorder leads to a shift of the critical lattice depth for the breakdown of transport as opposed to the case of correlated quasi-disorder, where no such shift is seen. Our findings, which are consistent with recent predictions for interacting bosons in one dimension, illustrate the important role of correlations in disordered atomic systems.

قيم البحث

اقرأ أيضاً

63 - Z. F. Xu , D. J. Wang , 2012
We study quantum spin mixing in a binary mixture of spin-1 condensates including coherent interspecies mixing process, using the familiar spinor condensates of $^{87}$Rb and $^{23}$Na atoms in the ground lower hyperfine F=1 manifolds as prototype exa mples. Within the single spatial mode approximation for each of the two spinor condensates, the mixing dynamics reduce to that of three coupled nonlinear pendulums with clear physical interpretations. Using suitably prepared initial states, it is possible to determine the interspecies singlet-pairing as well as spin-exchange interactions from the subsequent mixing dynamics.
345 - Jie Zhang , Z. F. Xu , L. You 2010
We study particle number fluctuations in the quantum ground states of a mixture of two spin-1 atomic condensates when the interspecies spin-exchange coupling interaction $c_{12}beta$ is adjusted. The two spin-1 condensates forming the mixture are res pectively ferromagnetic and polar in the absence of an external magnetic (B-) field. We categorize all possible ground states using the angular momentum algebra and compute their characteristic atom number fluctuations, focusing especially on the the AA phase (when $ c_{12}beta >0$), where the ground state becomes fragmented and atomic number fluctuations exhibit drastically different features from a single stand alone spin-1 polar condensate. Our results are further supported by numerical simulations of the full quantum many-body system.
We analyze a notable class of states relevant to an immiscible bosonic binary mixture loaded in a rotating box-like circular trap, i.e. states where vortices in one species host the atoms of the other species, which thus play the role of massive core s. Within a fully-analytical framework, we calculate the equilibrium distance distinguishing the motion of precession of two corotating massive vortices, the angular momentum of each component, the vortices healing length and the characteristic size of the cores. We then compare these previsions with the measures extracted from the numerical solutions of the associated coupled Gross-Pitaevskii equations. Interestingly, making use of a suitable change of reference frame, we show that vortices drag the massive cores which they host thus conveying them their same motion of precession, but that there is no evidence of tangential entrainment between the two fluids, since the cores keep their orientation constant while orbiting.
181 - Z. F. Xu , J. W. Mei , R. Lu 2010
We study the ground state phases for a mixture of two atomic spin-1 Bose-Einstein condensates (BECs) in the presence of a weak magnetic (B-) field. The ground state is found to contain a broken-axisymmetry (BA) phase due to competitions among intra- and inter-species spin exchange interactions and the linear Zeeman shifts. This is in contrast to the case of a single species spin- 1 condensate, where the axisymmetry breaking results from competitions among the linear and quadratic Zeeman shifts and the intra-species ferromagnetic interaction. All other remaining ground state phases for the mixture are found to preserve axisymmetry. We further elaborate on the ground state phase diagram and calculate their Bogoliubov excitation spectra. For the BA phase, there exist three Goldstone modes attempting to restore the broken U(1) and SO(2) symmetries.
We study a mixture of spin-$1$ bosonic and spin-$1/2$ fermionic cold atoms, e.g., $^{87}$Rb and $^{6}$Li, confined in a triangular optical lattice. With fermions at $3/4$ filling, Fermi surface nesting leads to spontaneous formation of various spin t extures of bosons in the ground state, such as collinear, coplanar and even non-coplanar spin orders. The phase diagram is mapped out with varying boson tunneling and Bose-Fermi interactions. Most significantly, in one non-coplanar state the mixture is found to exhibit a spontaneous quantum Hall effect in fermions and crystalline superfluidity in bosons, both driven by interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا