ﻻ يوجد ملخص باللغة العربية
We report the observation of many-body interaction effects for a homonuclear bosonic mixture in a three-dimensional optical lattice with variable state dependence along one axis. Near the superfluid-to-Mott insulator transition for one component, we find that the presence of a second component can reduce the apparent superfluid coherence, most significantly when it either experiences a strongly localizing lattice potential or none at all. We examine this effect by varying the relative populations and lattice depths, and discuss the observed behavior in view of recent proposals for scattering from impurities and of atom-phonon coupling for atoms immersed in a superfluid.
We consider a mixture of two bosonic species with tunable interspecies interaction in a periodic potential and discuss the advantages of low filling factors on the detection of the pair-superfluid phase. We show how the emergence of such a phase can
Motivated by recent experiments and theoretical investigations on binary mixtures, we investigate the miscible-immiscible transition at finite temperature by means of Quantum Monte Carlo. Based on the observation that the segregated phase is strongly
We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental obse
We propose a model for addressing the superfluidity of two different Fermi species confined in a bilayer geometry of square optical lattices. The fermions are assumed to be molecules with interlayer s-wave interactions, whose dipole moments are orien
Topological superfluids are of technological relevance since they are believed to host Majorana bound states, a powerful resource for quantum computation and memory. Here we propose to realize topological superfluidity with fermionic atoms in an opti