ترغب بنشر مسار تعليمي؟ اضغط هنا

The Kawazumi-Zhang invariant $varphi$ for compact genus-two Riemann surfaces was recently shown to be a eigenmode of the Laplacian on the Siegel upper half-plane, away from the separating degeneration divisor. Using this fact and the known behavior o f $varphi$ in the non-separating degeneration limit, it is shown that $varphi$ is equal to the Theta lift of the unique (up to normalization) weak Jacobi form of weight $-2$. This identification provides the complete Fourier-Jacobi expansion of $varphi$ near the non-separating node, gives full control on the asymptotics of $varphi$ in the various degeneration limits, and provides a efficient numerical procedure to evaluate $varphi$ to arbitrary accuracy. It also reveals a mock-type holomorphic Siegel modular form of weight $-2$ underlying $varphi$. From the general relation between the Faltings invariant, the Kawazumi-Zhang invariant and the discriminant for hyperelliptic Riemann surfaces, a Theta lift representation for the Faltings invariant in genus two readily follows.
100 - Boris Pioline 2015
Four-graviton couplings in the low energy effective action of type II string vacua compactified on tori are strongly constrained by supersymmetry and U-duality. While the $R^4$ and $D^4 R^4$ couplings are known exactly in terms of Langlands-Eisenstei n series of the U-duality group, the $D^6 R^4$ couplings are not nearly as well understood. Exploiting the coincidence of the U-duality group in $D=6$ with the T-duality group in $D=5$, we propose an exact formula for the $D^6 R^4$ couplings in type II string theory compactified on $T^4$, in terms of a genus-two modular integral plus a suitable Eisenstein series. The same modular integral computes the two-loop correction to $D^6 R^4$ in 5 dimensions, but here provides the non-perturbative completion of the known perturbative terms in $D=6$. This proposal hinges on a systematic re-analysis of the weak coupling and large radius of the $D^6 R^4$ in all dimensions $Dgeq 3$, which fills in some gaps and resolves some inconsistencies in earlier studies.
94 - Boris Pioline 2015
In $D=4,N=2$ theories on $R^{3,1}$, the index receives contributions not only from single-particle BPS states, counted by the BPS indices, but also from multi-particle states made of BPS constituents. In a recent work [arXiv:1406.2360], a general for mula expressing the index in terms of the BPS indices was proposed, which is smooth across walls of marginal stability and reproduces the expected single-particle contributions. In this note, I analyze the two-particle contributions predicted by this formula, and show agreement with the spectral asymmetry of the continuum of scattering states in the supersymmetric quantum mechanics of two non-relativistic, mutually non-local dyons. This provides a physical justification for the error function profile used in the mathematics literature on indefinite theta series, and in the physics literature on black hole partition functions.
We revisit the evaluation of one-loop modular integrals in string theory, employing new methods that, unlike the traditional orbit method, keep T-duality manifest throughout. In particular, we apply the Rankin-Selberg-Zagier approach to cases where t he integrand function grows at most polynomially in the IR. Furthermore, we introduce new techniques in the case where `unphysical tachyons contribute to the one-loop couplings. These methods can be viewed as a modular invariant version of dimensional regularisation. As an example, we treat one-loop BPS-saturated couplings involving the $d$-dimensional Narain lattice and the invariant Klein $j$-function, and relate them to (shifted) constrained Epstein Zeta series of O(d,d;Z). In particular, we recover the well-known results for d=2 in a few easy steps.
127 - Boris Pioline 2010
Four-graviton, eight-derivative couplings in the low energy effective action of toroidal type II string compactifications are tightly constrained by U-duality invariance and by supersymmetry. In this note, we revisit earlier proposals for the automor phic form governing these couplings in dimension D=3,4,5,6, and propose that the correct automorphic form is the minimal theta series for the corresponding U-duality group. Evidence for this proposal comes from i) the matching of infinitesimal characters, ii) the fact that the Fourier coefficients have support on 1/2-BPS charges and iii) decompactification limits. In particular, we show that non-perturbative effects can be interpreted as 1/2-BPS instantons, or 1/2-BPS particles in one dimension higher (together with Taub-NUT instantons in the D=3 case). Based on similar considerations, we also conjecture the form of 1/4-BPS saturated couplings such as $ abla^4 R^4$ couplings in the same dimensions.
347 - Micha Berkooz 2009
Stationary solutions of 5D supergravity with U(1) isometry can be efficiently studied by dimensional reduction to three dimensions, where they reduce to solutions to a locally supersymmetric non-linear sigma model. We generalize this procedure to 5D gauged supergravity, and identify the corresponding gauging in 3D. We pay particular attention to the case where the Killing spinor is non constant along the fibration, which results, even for ungauged supergravity in 5D, in an additional gauging in 3D, without introducing any extra potential. We further study SU(2)times U(1) symmetric solutions, which correspond to geodesic motion on the sigma model (with potential in the gauged case). We identify and study the algebra of BPS constraints relevant for the Breckenridge-Myers-Peet-Vafa black hole, the Gutowski-Reall black hole and several other BPS solutions, and obtain the corresponding radial wave functions in the semi-classical approximation.
195 - Yann Michel 2008
Stationary, spherically symmetric solutions of N=2 supergravity in 3+1 dimensions have been shown to correspond to holomorphic curves on the twistor space of the quaternionic-Kahler space which arises in the dimensional reduction along the time direc tion. In this note, we generalize this result to the case of 1/4-BPS black holes in N=4 supergravity, and show that they too can be lifted to holomorphic curves on a twistor space Z, obtained by fibering the Grassmannian F=SO(8)/U(4) over the moduli space in three-dimensions SO(8,n_v+2)/SO(8)xSO(n_v+2). This provides a kind of octonionic generalization of the standard constructions in quaternionic geometry, and may be useful for generalizing the known BPS black hole solutions, and finding new non-BPS extremal solutions.
254 - Yann Michel 2007
Motivated by applications to black hole physics and duality, we study the effect of higher derivative corrections on the dimensional reduction of four-dimensional Einstein, Einstein Liouville and Einstein-Maxwell gravity to one direction, as appropri ate for stationary, spherically symmetric solutions. We construct a field redefinition scheme such that the one-dimensional Lagrangian is corrected only by powers of first derivatives of the fields, eliminating spurious modes and providing a suitable starting point for quantization. We show that the Ehlers symmetry, broken by the leading $R^2$ corrections in Einstein-Liouville gravity, can be restored by including contributions of Taub-NUT instantons. Finally, we give a preliminary discussion of the duality between higher-derivative F-term corrections on the vector and hypermultiplet branches in N=2 supergravity in four dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا