ﻻ يوجد ملخص باللغة العربية
Four-graviton, eight-derivative couplings in the low energy effective action of toroidal type II string compactifications are tightly constrained by U-duality invariance and by supersymmetry. In this note, we revisit earlier proposals for the automorphic form governing these couplings in dimension D=3,4,5,6, and propose that the correct automorphic form is the minimal theta series for the corresponding U-duality group. Evidence for this proposal comes from i) the matching of infinitesimal characters, ii) the fact that the Fourier coefficients have support on 1/2-BPS charges and iii) decompactification limits. In particular, we show that non-perturbative effects can be interpreted as 1/2-BPS instantons, or 1/2-BPS particles in one dimension higher (together with Taub-NUT instantons in the D=3 case). Based on similar considerations, we also conjecture the form of 1/4-BPS saturated couplings such as $ abla^4 R^4$ couplings in the same dimensions.
Unlike the $mathcal{R}^4$ and $ abla^4mathcal{R}^4$ couplings, whose coefficients are Langlands-Eisenstein series of the U-duality group, the coefficient $mathcal{E}_{(0,1)}^{(d)}$ of the $ abla^6mathcal{R}^4$ interaction in the low-energy effective
We provide an introduction to the theory of Eisenstein series and automorphic forms on real simple Lie groups G, emphasising the role of representation theory. It is useful to take a slightly wider view and define all objects over the (rational) adel
Let $G$ be a real classical group of type $B$, $C$, $D$ (including the real metaplectic group). We consider a nilpotent adjoint orbit $check{mathcal O}$ of $check G$, the Langlands dual of $G$ (or the metaplectic dual of $G$ when $G$ is a real metapl
We propose a new method to construct rigid $G$-automorphic representations and rigid $widehat{G}$-local systems for reductive groups $G$. The construction involves the notion of euphotic representations, and the proof for rigidity involves the geometry of certain Hessenberg varieties.
We investigate Fourier coefficients of automorphic forms on split simply-laced Lie groups G. We show that for automorphic representations of small Gelfand-Kirillov dimension the Fourier coefficients are completely determined by certain degenerate Whi