ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that Cooper pairing can occur intrinsically away from the Fermi surface in $j=3/2$ superconductors with strong spin-orbit coupling and equally curved bands in the normal state. In contrast to conventional pairing between spin-$1/2$ electrons, we derive that pairing can happen between inter-band electrons having different total angular momenta, i.e., $j=1/2$ with $j=3/2$ electrons. Such superconducting correlations manifest themselves by a pair of indirect gap-like structures at finite excitation energies. An observable signature of this exotic pairing is the emergence of a pair of symmetric superconducting coherence peaks in the density of states at finite energies. We argue that finite-energy pairing is a generic feature of high-spin superconductors, both in presence and absence of inversion symmetry.
We evaluate the microscopically relevant parameters for electrical transport of hybrid superconductor-semiconductor interfaces. In contrast to the commonly used geometrically constricted metallic systems, we focus on materials with dissimilar electro nic properties like low-carrier density semiconductors combined with superconductors, without imposing geometric confinement. We find an intrinsic mode-selectivity, a directional momentum-filter, due to the differences in electronic band-structure, which creates a separation of electron reservoirs each at the opposite sides of the semiconductor, while at the same time selecting modes propagating almost perpendicular to the interface. The electronic separation coexists with a transport current dominated by Andreev reflection and low elastic back-scattering, both dependent on the gate-controllable electronic properties of the semiconductor.
The kinetic equation used for the description of Dirac systems does not fully take into account two features that play an important role in the vicinity of the Dirac point: (i) the spin degree of freedom, in particular if the spin-flip energy $2 vp$ is not large anymore; and (ii) the failure of the semiclassical approximation due to the large Fermi wavelength. In our work, we propose a novel quantum kinetic equation, which does not have these two drawbacks. Exploiting it in the presence of short range disorder, we demonstrate how it predicts the correct minimal conductivity in 2D Dirac system, a result that has so far been obtained only by other methods like the Kubo formula. The nature of the presented kinetic equation opens up the possibility for the kinetic description of deeply quantum and even strongly correlated Dirac systems.
The CNOT gate is a two-qubit gate which is essential for universal quantum computation. A well-established approach to implement it within Majorana-based qubits relies on subsequent measurement of (joint) Majorana parities. We propose an alternative scheme which operates a protected CNOT gate via the holonomic control of a handful of system parameters, without requiring any measurement. We show how the adiabatic tuning of pair-wise couplings between Majoranas can robustly lead to the full entanglement of two qubits, insensitive with respect to small variations in the control of the parameters.
Second-order topological superconductors (SOTSs) host localized Majorana fermions and provide a new platform for topological quantum computation. We propose a remarkable and feasible way to realize networks based on SOTSs which allow to nucleate and braid Majorana bound states (MBSs) in an all-electrical manner without fine-tuning. The proposed setups are scalable in a straightforward way and can accommodate any even number of MBSs. Moreover, the MBSs in the networks allow defining qubits whose states can be initialized and read out by measuring Josephson currents flowing between SOTS islands. Our proposal can be implemented in monolayers of $text{FeTe}{}_{1-x}text{Se}_{x}$, monolayers of 1T-WTe$_2$, and inverted Hg(Cd)Te quantum wells in proximity to conventional superconductors.
Majorana bound states are zero-energy excitations of topological superconductors which obey non-Abelian exchange statistics and are basic building blocks for topological quantum computation. In order to observe and exploit their extraordinary propert ies, we need to be able to properly manipulate them, for instance, by braiding a couple of them in real space. We propose a setup based on the helical edges of two-dimensional topological insulators (2DTI) which allows for a high degree of tunability by only controlling a handful of superconducting phases. In particular, our setup allows to move the Majoranas along a single edge as well as to move them across two different edges coupled by a quantum point contact. Robustness against non-optimal control of the phases is also discussed. This proposal constitutes an essential step forward towards realizing 2DTI-based architectures capable of performing braiding of Majoranas in a feasible way.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا