ﻻ يوجد ملخص باللغة العربية
Majorana bound states are zero-energy excitations of topological superconductors which obey non-Abelian exchange statistics and are basic building blocks for topological quantum computation. In order to observe and exploit their extraordinary properties, we need to be able to properly manipulate them, for instance, by braiding a couple of them in real space. We propose a setup based on the helical edges of two-dimensional topological insulators (2DTI) which allows for a high degree of tunability by only controlling a handful of superconducting phases. In particular, our setup allows to move the Majoranas along a single edge as well as to move them across two different edges coupled by a quantum point contact. Robustness against non-optimal control of the phases is also discussed. This proposal constitutes an essential step forward towards realizing 2DTI-based architectures capable of performing braiding of Majoranas in a feasible way.
The most promising mechanisms for the formation of Majorana bound states (MBSs) in condensed matter systems involve one-dimensional systems (such as semiconductor nanowires, magnetic chains, and quantum spin Hall insulator (QSHI) edges) proximitized
We use a superconducting microresonator as a cavity to sense absorption of microwaves by a superconducting quantum point contact defined by surface gates over a proximitized two-dimensional electron gas. Renormalization of the cavity frequency with p
The unique properties of quantum Hall devices arise from the ideal one-dimensional edge states that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge states across a quantum point contact (QPC) has already reve
We analyze tunneling of non-Abelian quasiparticles between the edges of a quantum Hall droplet at Landau level filling fraction nu=5/2, assuming that the electrons in the first excited Landau level organize themselves in the non-Abelian Moore-Read Pf
We theoretically obtain the phase diagram of localized magnetic impurity spins arranged in a one-dimensional chain on top of a one- or two-dimensional electron gas with Rashba spin-orbit coupling. The interactions between the spins are mediated by th