ترغب بنشر مسار تعليمي؟ اضغط هنا

Many commonsense reasoning NLP tasks involve choosing between one or more possible answers to a question or prompt based on knowledge that is often implicit. Large pretrained language models (PLMs) can achieve near-human performance on such tasks, wh ile providing little human-interpretable evidence of the underlying reasoning they use. In this work, we show how to use these same models to generate such evidence: inspired by the contrastive nature of human explanations, we use PLMs to complete explanation prompts which contrast alternatives according to the key attribute(s) required to justify the correct answer (for example, peanuts are usually salty while raisins are sweet). Conditioning model decisions on these explanations improves performance on two commonsense reasoning benchmarks, as compared to previous non-contrastive alternatives. These explanations are also judged by humans to be more relevant for solving the task, and facilitate a novel method to evaluate explanation faithfulfness.
Natural language (NL) explanations of model predictions are gaining popularity as a means to understand and verify decisions made by large black-box pre-trained models, for NLP tasks such as Question Answering (QA) and Fact Verification. Recently, pr e-trained sequence to sequence (seq2seq) models have proven to be very effective in jointly making predictions, as well as generating NL explanations. However, these models have many shortcomings; they can fabricate explanations even for incorrect predictions, they are difficult to adapt to long input documents, and their training requires a large amount of labeled data. In this paper, we develop FiD-Ex, which addresses these shortcomings for seq2seq models by: 1) introducing sentence markers to eliminate explanation fabrication by encouraging extractive generation, 2) using the fusion-in-decoder architecture to handle long input contexts, and 3) intermediate fine-tuning on re-structured open domain QA datasets to improve few-shot performance. FiD-Ex significantly improves over prior work in terms of explanation metrics and task accuracy, on multiple tasks from the ERASER explainability benchmark, both in the fully supervised and in the few-shot settings.
Decisions of complex language understanding models can be rationalized by limiting their inputs to a relevant subsequence of the original text. A rationale should be as concise as possible without significantly degrading task performance, but this ba lance can be difficult to achieve in practice. In this paper, we show that it is possible to better manage this trade-off by optimizing a bound on the Information Bottleneck (IB) objective. Our fully unsupervised approach jointly learns an explainer that predicts sparse binary masks over sentences, and an end-task predictor that considers only the extracted rationale. Using IB, we derive a learning objective that allows direct control of mask sparsity levels through a tunable sparse prior. Experiments on ERASER benchmark tasks demonstrate significant gains over norm-minimization techniques for both task performance and agreement with human rationales. Furthermore, we find that in the semi-supervised setting, a modest amount of gold rationales (25% of training examples) closes the gap with a model that uses the full input.
Although over 100 languages are supported by strong off-the-shelf machine translation systems, only a subset of them possess large annotated corpora for named entity recognition. Motivated by this fact, we leverage machine translation to improve anno tation-projection approaches to cross-lingual named entity recognition. We propose a system that improves over prior entity-projection methods by: (a) leveraging machine translation systems twice: first for translating sentences and subsequently for translating entities; (b) matching entities based on orthographic and phonetic similarity; and (c) identifying matches based on distributional statistics derived from the dataset. Our approach improves upon current state-of-the-art methods for cross-lingual named entity recognition on 5 diverse languages by an average of 4.1 points. Further, our method achieves state-of-the-art F_1 scores for Armenian, outperforming even a monolingual model trained on Armenian source data.
Motivated by recent evidence pointing out the fragility of high-performing span prediction models, we direct our attention to multiple choice reading comprehension. In particular, this work introduces a novel method for improving answer selection on long documents through weighted global normalization of predictions over portions of the documents. We show that applying our method to a span prediction model adapted for answer selection helps model performance on long summaries from NarrativeQA, a challenging reading comprehension dataset with an answer selection task, and we strongly improve on the task baseline performance by +36.2 Mean Reciprocal Rank.
We present a feature vector formation technique for documents - Sparse Composite Document Vector (SCDV) - which overcomes several shortcomings of the current distributional paragraph vector representations that are widely used for text representation . In SCDV, word embeddings are clustered to capture multiple semantic contexts in which words occur. They are then chained together to form document topic-vectors that can express complex, multi-topic documents. Through extensive experiments on multi-class and multi-label classification tasks, we outperform the previous state-of-the-art method, NTSG (Liu et al., 2015a). We also show that SCDV embeddings perform well on heterogeneous tasks like Topic Coherence, context-sensitive Learning and Information Retrieval. Moreover, we achieve significant reduction in training and prediction times compared to other representation methods. SCDV achieves best of both worlds - better performance with lower time and space complexity.
Most of the online news media outlets rely heavily on the revenues generated from the clicks made by their readers, and due to the presence of numerous such outlets, they need to compete with each other for reader attention. To attract the readers to click on an article and subsequently visit the media site, the outlets often come up with catchy headlines accompanying the article links, which lure the readers to click on the link. Such headlines are known as Clickbaits. While these baits may trick the readers into clicking, in the long run, clickbaits usually dont live up to the expectation of the readers, and leave them disappointed. In this work, we attempt to automatically detect clickbaits and then build a browser extension which warns the readers of different media sites about the possibility of being baited by such headlines. The extension also offers each reader an option to block clickbaits she doesnt want to see. Then, using such reader choices, the extension automatically blocks similar clickbaits during her future visits. We run extensive offline and online experiments across multiple media sites and find that the proposed clickbait detection and the personalized blocking approaches perform very well achieving 93% accuracy in detecting and 89% accuracy in blocking clickbaits.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا