ترغب بنشر مسار تعليمي؟ اضغط هنا

358 - Ben Andrews , Yitao Lei , Yong Wei 2021
In the first part of this paper, we develop the theory of anisotropic curvature measures for convex bodies in the Euclidean space. It is proved that any convex body whose boundary anisotropic curvature measure equals a linear combination of other low er order anisotropic curvature measures with nonnegative coefficients is a scaled Wulff shape. This generalizes the classical results by Schneider [Comment. Math. Helv. textbf{54} (1979), 42--60] and by Kohlmann [Arch. Math. (Basel) textbf{70} (1998), 250--256] to the anisotropic setting. The main ingredients in the proof are the generalized anisotropic Minkowski formulas and an inequality of Heintze--Karcher type for convex bodies. In the second part, we consider the volume preserving flow of smooth closed convex hypersurfaces in the Euclidean space with speed given by a positive power $alpha $ of the $k$th anisotropic mean curvature plus a global term chosen to preserve the enclosed volume of the evolving hypersurfaces. We prove that if the initial hypersurface is strictly convex, then the solution of the flow exists for all time and converges to the Wulff shape in the Hausdorff sense. The characterization theorem for Wulff shapes via the anisotropic curvature measures will be used crucially in the proof of the convergence result. Moreover, in the cases $k=1$, $n$ or $alphageq k$, we can further improve the Hausdorff convergence to the smooth and exponential convergence.
Preferential attachment networks are a type of random network where new nodes are connected to existing ones at random, and are more likely to connect to those that already have many connections. We investigate further a family of models introduced b y Antunovi{c}, Mossel and R{a}cz where each vertex in a preferential attachment graph is assigned a type, based on the types of its neighbours. Instances of this type of process where the proportions of each type present do not converge over time seem to be rare. Previous work found that a rock-paper-scissors setup where each new nodes type was determined by a rock-paper-scissors contest between its two neighbours does not converge. Here, two cases similar to that are considered, one which is like the above but with an arbitrarily small chance of picking a random type and one where there are four neighbours which perform a knockout tournament to determine the new type. These two new setups, despite seeming very similar to the rock-paper-scissors model, do in fact converge, perhaps surprisingly.
For Schrodinger operators on an interval with either convex or symmetric single-well potentials, and Robin or Neumann boundary conditions, the gap between the two lowest eigenvalues is minimised when the potential is constant. We also have results for the $p$-Laplacian.
In this article, we will use the harmonic mean curvature flow to prove a new class of Alexandrov-Fenchel type inequalities for strictly convex hypersurfaces in hyperbolic space in terms of total curvature, which is the integral of Gaussian curvature on the hypersurface. We will also use the harmonic mean curvature flow to prove a new class of geometric inequalities for horospherically convex hypersurfaces in hyperbolic space. Using these new Alexandrov-Fenchel type inequalities and the inverse mean curvature flow, we obtain an Alexandrov-Fenchel inequality for strictly convex hypersurfaces in hyperbolic space, which was previously proved for horospherically convex hypersurfaces by Wang and Xia [44]. Finally, we use the mean curvature flow to prove a new Heintze-Karcher type inequality for hypersurfaces with positive Ricci curvature in hyperbolic space.
In this paper we use a gradient flow to deform closed planar curves to curves with least variation of geodesic curvature in the $L^2$ sense. Given a smooth initial curve we show that the solution to the flow exists for all time and, provided the leng th of the evolving curve remains bounded, smoothly converges to a multiply-covered circle. Moreover, we show that curves in any homotopy class with initially small $L^3lVert k_srVert_2^2$ enjoy a uniform length bound under the flow, yielding the convergence result in these cases.
We derive estimates relating the values of a solution at any two points to the distance between the points, for quasilinear isotropic elliptic equations on compact Riemannian manifolds, depending only on dimension and a lower bound for the Ricci curv ature. These estimates imply sharp gradient bounds relating the gradient of an arbitrary solution at given height to that of a symmetric solution on a warped product model space. We also discuss the problem on Finsler manifolds with nonnegative weighted Ricci curvature, and on complete manifolds with bounded geometry, including solutions on manifolds with boundary with Dirichlet boundary condition. Particular cases of our results include gradient estimates of Modica type.
In this paper, we study flows of hypersurfaces in hyperbolic space, and apply them to prove geometric inequalities. In the first part of the paper, we consider volume preserving flows by a family of curvature functions including positive powers of $k $-th mean curvatures with $k=1,cdots,n$, and positive powers of $p$-th power sums $S_p$ with $p>0$. We prove that if the initial hypersurface $M_0$ is smooth and closed and has positive sectional curvatures, then the solution $M_t$ of the flow has positive sectional curvature for any time $t>0$, exists for all time and converges to a geodesic sphere exponentially in the smooth topology. The convergence result can be used to show that certain Alexandrov-Fenchel quermassintegral inequalities, known previously for horospherically convex hypersurfaces, also hold under the weaker condition of positive sectional curvature. In the second part of this paper, we study curvature flows for strictly horospherically convex hypersurfaces in hyperbolic space with speed given by a smooth, symmetric, increasing and homogeneous degree one function $f$ of the shifted principal curvatures $lambda_i=kappa_i-1$, plus a global term chosen to impose a constraint on the quermassintegrals of the enclosed domain, where $f$ is assumed to satisfy a certain condition on the second derivatives. We prove that if the initial hypersurface is smooth, closed and strictly horospherically convex, then the solution of the flow exists for all time and converges to a geodesic sphere exponentially in the smooth topology. As applications of the convergence result, we prove a new rigidity theorem on smooth closed Weingarten hypersurfaces in hyperbolic space, and a new class of Alexandrov-Fenchel type inequalities for smooth horospherically convex hypersurfaces in hyperbolic space.
On a convex bounded Euclidean domain, the ground state for the Laplacian with Neumann boundary conditions is a constant, while the Dirichlet ground state is log-concave. The Robin eigenvalue problem can be considered as interpolating between the Diri chlet and Neumann cases, so it seems natural that the Robin ground state should have similar concavity properties. In this paper we show that this is false, by analysing the perturbation problem from the Neumann case. In particular we prove that on polyhedral convex domains, except in very special cases (which we completely classify) the variation of the ground state with respect to the Robin parameter is not a concave function. We conclude from this that the Robin ground stat is not log-concave (and indeed even has some superlevel sets which are non-convex) for small Robin parameter on polyhedral convex domains outside a special class, and hence also on arbitrary convex domains which approximate these in Hausdorff distance.
130 - Ben Andrews , Yong Wei 2017
We consider the quermassintegral preserving flow of closed emph{h-convex} hypersurfaces in hyperbolic space with the speed given by any positive power of a smooth symmetric, strictly increasing, and homogeneous of degree one function $f$ of the princ ipal curvatures which is inverse concave and has dual $f_*$ approaching zero on the boundary of the positive cone. We prove that if the initial hypersurface is emph{h-convex}, then the solution of the flow becomes strictly emph{h-convex} for $t>0$, the flow exists for all time and converges to a geodesic sphere exponentially in the smooth topology.
159 - Ben Andrews , Yong Wei 2017
We consider the flow of closed convex hypersurfaces in Euclidean space $mathbb{R}^{n+1}$ with speed given by a power of the $k$-th mean curvature $E_k$ plus a global term chosen to impose a constraint involving the enclosed volume $V_{n+1}$ and the m ixed volume $V_{n+1-k}$ of the evolving hypersurface. We prove that if the initial hypersurface is strictly convex, then the solution of the flow exists for all time and converges to a round sphere smoothly. No curvature pinching assumption is required on the initial hypersurface.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا